Citation: | WANG Zexiao, YE Linzheng, ZHU Xijing, LIU Yao, CHUAI Shida, LV Boyang, WANG Dong. Analysis of flow field characteristics of silicon carbide CMP under ultrasonic action[J]. Diamond & Abrasives Engineering, 2025, 45(1): 102-112. doi: 10.13394/j.cnki.jgszz.2023.0273 |
[1] |
邓家云. 单晶SiC电芬顿化学机械抛光机理研究 [D]. 广州: 广东工业大学, 2022.
DENG Jiayun. Study on the mechanism of electro-fenton chemical mechanical polishing of single crystal SiC [D]. Guangzhou: Guangdong University of Technology, 2022.
|
[2] |
ZHANG X, LIU X, WANG Y, et al. Optimizing the flatness of 4H-silicon carbide wafers by tuning the sequence of lapping [J]. Semiconductor Science and Technology,2023,38(3):034001. doi: 10.1088/1361-6641/acb1ce
|
[3] |
XIE W, ZHANG Z, LIAO L, et al. Green chemical mechanical polishing of sapphire wafers using a novel slurry [J]. Nanoscale,2020,12(44):22518-22526. doi: 10.1039/D0NR04705H
|
[4] |
LIAO L, ZHANG Z, MENG F, et al. A novel slurry for chemical mechanical polishing of single crystal diamond [J]. Applied Surface Science,2021,564:150431. doi: 10.1016/j.apsusc.2021.150431
|
[5] |
ZHANG Z, CUI J, ZHANG J, et al. Environment friendly chemical mechanical polishing of copper [J]. Applied Surface Science,2019(467/468):5-11. doi: 10.1016/j.apsusc.2018.10.133
|
[6] |
ZHANG Z, LIAO L, WANG X, et al. Development of a novel chemical mechanical polishing slurry and its polishing mechanisms on a nickel alloy [J]. Applied Surface Science,2020,506:144670. doi: 10.1016/j.apsusc.2019.144670
|
[7] |
ZHANG Z, SHI Z, DU Y, et al. A novel approach of chemical mechanical polishing for a titanium alloy using an environment-friendly slurry [J]. Applied Surface Science,2018,427:409-415. doi: 10.1016/j.apsusc.2017.08.064
|
[8] |
CUI X, ZHANG Z, SHI C, et al. A novel green chemical mechanical polishing for potassium dihydrogen phosphate using corn oil slurry [J]. Materials Today Sustainability,2022,20:100257. doi: 10.1016/j.mtsust.2022.100257
|
[9] |
AIDA H, DOI T, TAKEDA H, et al. Ultraprecision CMP for sapphire, GaN, and SiC for advanced optoelectronics materials [J]. Current Applied Physics,2012,12:S41-S46. doi: 10.1016/j.cap.2012.02.016
|
[10] |
ZHAI W, GAO B, CHANG J, et al. Optimization of ultrasonic-assisted polishing SiC through CFD simulation [J]. Nanomanufacturing and Metrology,2019,2(1):36-44. doi: 10.1007/s41871-018-0033-8
|
[11] |
ZHOU M, ZHONG M, XU W. Novel model of material removal rate on ultrasonic-assisted chemical mechanical polishing for sapphire [J]. Friction,2023,11(11):2073-2090. doi: 10.1007/s40544-022-0713-7
|
[12] |
LIU T, LEI H. Nd3 + -doped colloidal SiO2 composite abrasives: Synthesis and the effects on chemical mechanical polishing (CMP) performances of sapphire wafers [J]. Applied Surface Science,2017,413:16-26. doi: 10.1016/j.apsusc.2017.03.270
|
[13] |
SU J, DU J, LIU H, et al. Research on material removal rate of CMP 6H-SiC crystal substrate (0001) Si surface based on abrasive alumina(Al2O3) [J]. Procedia Engineering,2011,24:441-446. doi: 10.1016/j.proeng.2011.11.2673
|
[14] |
梁庆瑞, 胡小波, 陈秀芳, 等. 4H-SiC的强氧化液化学机械抛光(英文) [J]. 人工晶体学报,2015,44(7):1741-1747. doi: 10.3969/j.issn.1000-985X.2015.07.005
LIANG Qingrui, HU Xiaobo, CHEN Xiufang, el al. Chemical mechanical polishing of 4H-SiC with strong oxidizing slurry [J]. Journal of Synthetic Crystals(in English),2015,44(7):1741-1747. doi: 10.3969/j.issn.1000-985X.2015.07.005
|
[15] |
陈国美, 倪自丰, 钱善华, 等. SiC晶片不同晶面的CMP抛光效果对比研究 [J]. 人工晶体学报,2019,48(1):155-159,172. doi: 10.3969/j.issn.1000-985X.2019.01.026
CHEN Guomei, NI Zifeng, QIAN Shanhua, el al. Influence of different crystallographic planes on CMP performance of SiC wafer [J]. Journal of Synthetic Crystals,2019,48(1):155-159,172. doi: 10.3969/j.issn.1000-985X.2019.01.026
|
[16] |
YIN L, VANCOILLE E Y J, RAMESH K, et al. Surface characterization of 6H-SiC(0001) substrates in indentation and abrasive machining [J]. International Journal of Machine Tools and Manufacture,2004,44(6):607-615. doi: 10.1016/j.ijmachtools.2003.12.006
|
[17] |
TAM H Y, CHENG H B, WANG Y W. Removal rate and surface roughness in the lapping and polishing of RB-SiC optical components [J]. Journal of Materials Processing Technology,2007(192/193):276-280. doi: 10.1016/j.jmatprotec.2007.04.091
|
[18] |
LIANG C, LIU W, ZHENG Y, et al. Fractal nature of non-spherical silica particles via facile synthesis for the abrasive particles in chemical mechanical polishing [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2016,500:146-153. doi: 10.1016/j.colsurfa.2016.04.031
|
[19] |
LIANG C, LIU W, LI S, et al. A nano-scale mirror-like surface of Ti–6Al–4V attained by chemical mechanical polishing [J]. Chinese Physics B,2016,25(5):058301. doi: 10.1088/1674-1056/25/5/058301
|
[20] |
MUHAMMAD S N F A, MOHD Y M H, SENG O B, et al. Ultrafiltration based on various polymeric membranes for recovery of spent tungsten slurry for reuse in chemical mechanical polishing process [J]. Journal of Membrane Science,2018,548:232-238. doi: 10.1016/j.memsci.2017.11.034
|
[21] |
KHANNA A J, GUPTA S, KUMAR P, et al. Study of agglomeration behavior of chemical mechanical polishing slurry under controlled shear environments [J]. ECS Journal of Solid State Science and Technology,2018,7(5):P238-P242. doi: 10.1149/2.0091805jss
|
[22] |
CHAVOSHI S Z, LUO X. Hybrid micro-machining processes: A review [J]. Precision Engineering,2015,41:1-23. doi: 10.1016/j.precisioneng.2015.03.001
|
[23] |
YU T, ZHANG T, YU X, et al. Study on optimization of ultrasonic-vibration-assisted polishing process parameters [J]. Measurement,2019,135:651-660. doi: 10.1016/j.measurement.2018.12.008
|
[24] |
KANG J W, HU Y S, MA J Y, et al. Effect of different air content on cavitation with ultrasonic treatment [J]. Advanced Materials Research,2013(655/657):43-47. doi: 10.4028/www.scientific.net/AMR.655-657.43
|
[25] |
ZHAO Q, SUN Z, GUO B. Material removal mechanism in ultrasonic vibration assisted polishing of micro cylindrical surface on SiC [J]. International Journal of Machine Tools and Manufacture,2016,103:28-39. doi: 10.1016/j.ijmachtools.2016.01.003
|
[26] |
ZHOU M, ZHONG M, XU W. Effects of ultrasonic amplitude on sapphire ultrasonic vibration assisted chemical mechanical polishing by experimental and CFD method [J]. Mechanics of Advanced Materials and Structures,2022,29(28):7086-7103. doi: 10.1080/15376494.2021.1992691
|
[27] |
CHEN X, LIANG Y, CUI Z, et al. Study on material removal mechanism in ultrasonic chemical assisted polishing of silicon carbide [J]. Journal of Manufacturing Processes,2022,84:1463-1477. doi: 10.1016/j.jmapro.2022.11.014
|
[28] |
YU T, ZHANG T, YANG T, et al. CFD simulation and experimental studies of suspension flow field in ultrasonic polishing [J]. Journal of Materials Processing Technology,2019,266:715-725. doi: 10.1016/j.jmatprotec.2018.11.034
|
[29] |
MCTAVISH S, FESZTY D, NITZSCHE F. Evaluating Reynolds number effects in small-scale wind turbine experiments [J]. Journal of Wind Engineering and Industrial Aerodynamics,2013,120:81-90. doi: 10.1016/j.jweia.2013.07.006
|
[30] |
SHAHEED R, MOHAMMADIAN A, KHEIRKHAH G H. A comparison of standard k–ε and realizable k–ε turbulence models in curved and confluent channels [J]. Environmental Fluid Mechanics,2019,19(2):543-568. doi: 10.1007/s10652-018-9637-1
|
[31] |
SAHU S, BHATTACHARYAY R. Validation of COMSOL code for analyzing liquid metal magnetohydrodynamic flow [J]. Fusion Engineering and Design,2018,127:151-159. doi: 10.1016/j.fusengdes.2018.01.009
|
[32] |
IVORRA B. Application of the laminar navier–stokes equations for solving 2D and 3D pathfinding problems with static and dynamic spatial constraints: Implementation and validation in comsol multiphysics [J]. Journal of Scientific Computing,2018,74(2):1163-1187. doi: 10.1007/s10915-017-0489-5
|
[33] |
RAHAEIFARD M, KARIMZADEH A. A size-dependent axisymmetric plate element: Application to MEMS [J]. Archive of Applied Mechanics,2024,94(3):667-681. doi: 10.1007/s00419-024-02544-2
|