Citation: | SHI Sufang, ZHANG Baocai, WANG Xiayu, WANG Xinchang. The selection and simplification of physical models for simulation of abrasive flow machining uniformity[J]. Diamond & Abrasives Engineering, 2024, 44(5): 652-664. doi: 10.13394/j.cnki.jgszz.2023.0267 |
[1] |
GEORGE M A, KAMAT D V, KURIAN C P. Electronically tunable ACO based fuzzy FOPID controller for effective speed control of electric vehicle [J]. IEEE Access,2021,9:73392-73412. doi: 10.1109/ACCESS.2021.3080086
|
[2] |
WU Z G, LI W L, TANG H Y, et al. Research on the calculation of rotor's convective heat transfer coefficient of high-speed drive motor for EVs based on multiple scenarios [J]. Journal of Electrical Engineering & Technology,2023,18(6):4245-4256. doi: 10.1007/s42835-023-01485-0
|
[3] |
HAZRA S, REDDY J K. An aspect of noise, vibration, and harshness issues in electric vehicles [J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH,2021,6(1):23-33. doi: 10.4271/10-06-01-0002
|
[4] |
幸人 中野, 直 富田, 真琴 瀬木, 等. パルプモウルド製ヘルムホルツ共鳴器によるEV低速走行時の耳位置騒音低減 [J]. 日本機械学会論文集,2022,88(911):21-00395. doi: 10.1299/transjsme.21-00395
NAKANO S, TOMITA S, SEGI M, et al. Reduction of ear-position sound pressure at low speed in electric vehicles by pulp mold [J]. Transactions of the JSME (in Japanese),2022,88(911):21-00395. doi: 10.1299/transjsme.21-00395
|
[5] |
占雨兰. 电驱动NVH特点以及研究现状 [J]. 时代汽车,2021,12:109-110, 121. doi: 10.3969/j.issn.1672-9668.2021.12.048
ZHAN Yulan. Characteristics and research status of electric drive NVH [J]. Auto Time,2021,12:109-110, 121. doi: 10.3969/j.issn.1672-9668.2021.12.048
|
[6] |
SWART D J, BEKKER A. The relationship between consumer satisfaction and psychoacoustics of electric vehicle signature sound [J]. Applied Acoustics,2019,145:167-175. doi: 10.1016/j.apacoust.2018.09.019
|
[7] |
PADAVALA P, INAVOLU N, THAVEEDU J R, et al. Challenges in noise refinement of a pure electric passenger vehicle [J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH,2021,5(1):45-64. doi: 10.4271/10-05-01-0004
|
[8] |
KAHNENBLEY T, GRAVEL G. Gear standards for reliable measurement of noise-causing tooth flank ripples [J]. Forschung im Ingenieurwesen,2019,83(3):537-543. doi: 10.1007/s10010-019-00366-1
|
[9] |
SINGH S, KUMAR H, KUMAR S, et al. A systematic review on recent advancements in abrasive flow machining (AFM) [J]. Materials Today-Proceedings,2022,56:3108-3116. doi: 10.1016/j.matpr.2021.12.273
|
[10] |
ZHANG B C, CHEN S F, KHIABANI N, et al. Research on the underlying mechanism behind abrasive flow machining on micro-slit structures and simulation of viscoelastic media [J]. Advances in Manufacturing,2022,10(3):382-396. doi: 10.1007/s40436-022-00395-0
|
[11] |
SAMBHARIA J, MALI H S. Recent developments in abrasive flow finishing process: A review of current research and future prospects [J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2019,233(2):388-399. doi: 10.1177/0954405417731466
|
[12] |
DIXIT N, SHARMA V, KUMAR P. Research trends in abrasive flow machining: A systematic review [J]. Journal of Manufacturing Processes,2021,64:1434-1461. doi: 10.1016/j.jmapro.2021.03.009
|
[13] |
ZOU T G, YAN Q D, WANG L X, et al. Research on quality control of precision machining straight internal gear by abrasive flow based on large eddy simulation [J]. The International Journal of Advanced Manufacturing Technology,2022,119(7/8):5315-5334. doi: 10.1007/s00170-021-08453-w
|
[14] |
ZHAO W H, LIU J H, WANG L X, et al. Numerical simulation and experimental research on abrasive flow machining of helical internal gear [J]. International Journal of Abrasive Technology (IJAT),2024,12(2). doi: 10.1504/IJAT.2024.10065531
|
[15] |
FU Y Z, GAO H, YAN Q S, et al. Rheological characterisation of abrasive media and finishing behaviours in abrasive flow machining [J]. The International Journal of Advanced Manufacturing Technology,2020,107(7):3569-3580. doi: 10.1007/s00170-020-05288-9
|
[16] |
ZHANG B C, CHEN S F, WANG X C. Machining uniformity and property change of abrasive media for micro-porous structures [J]. Journal of Materials Processing Technology,2022,307:117675. doi: 10.1016/j.jmatprotec.2022.117675
|
[17] |
PAL P, JAIN K K. Computational simulation of abrasive flow machining for two dimensional models [J]. Materials Today: Proceedings,2018,5(5):12969-12983. doi: 10.1016/j.matpr.2018.02.282
|
[18] |
ZHANG B C, QIAO Y, KHIABANI N, et al. Study on rheological behaviors of media and material removal mechanism for abrasive flow machining (AFM) micro structures and corresponding simulations [J]. Journal of Manufacturing Processes,2022,73:248-259. doi: 10.1016/j.jmapro.2021.11.006
|
[19] |
KUMAR M, KUMAR V, KUMAR A, et al. CFD analysis of MR fluid applied for finishing of gear in MRAFF process [J]. Materials Today: Proceedings,2021,45:4677-4683. doi: 10.1016/j.matpr.2021.01.116
|
[20] |
CHENG K C, WANG A C, CHEN K Y, et al. Study of the polishing characteristics by abrasive flow machining with a rotating device [J]. Processes,2022,10(7):1362. doi: 10.3390/pr10071362
|
[21] |
LI J Y, WANG L X, ZHANG H F, et al. Mechanism research and discussion of the quality of precision machining of a fifth-order variable-diameter pipe using abrasive flow [J]. Strojniški Vestnik – Journal of Mechanical Engineering,2020,66(6):358-374. doi: 10.5545/sv-jme.2020.6554
|
[22] |
SAMOILENKO M, LANIK G, BRAILOVSKI V. Towards the determination of machining allowances and surface roughness of 3D-printed parts subjected to abrasive flow machining [J]. Journal of Manufacturing and Materials Processing,2021,5(4):111. doi: 10.3390/jmmp5040111
|
[23] |
高航, 付有志, 王宣平, 等. 螺旋面磨料流光整加工仿真与试验 [J]. 浙江大学学报(工学版),2016,50(5):920-926. doi: 10.3785/j.issn.1008973X.2016.05.015
GAO Hang, FU Youzhi, WANG Xuanping, et al. Simulations and experiments on finishing process of screw surface by using abrasive flow machining [J]. Journal of Zhejiang University (Engineering Science),2016,50(5):920-926. doi: 10.3785/j.issn.1008973X.2016.05.015
|
[24] |
郑志鑫, 董志国, 李孟楠, 等. 涡轮叶片内冷通道的磨料流光整加工特性 [J]. 金刚石与磨料磨具工程,2023,43(1):110-117. doi: 10.13394/j.cnki.jgszz.2022.0093
ZHENG Zhixin, DONG Zhiguo, LI Mengnan, et al. Abrasive flow finishing characteristics of internal cooling channel of turbine blade [J]. Diamond & Abrasives Engineering,2023,43(1):110-117. doi: 10.13394/j.cnki.jgszz.2022.0093
|
[25] |
李孟楠, 董志国, 郑志鑫, 等. 喷油嘴喷孔流道磨料流光整特性仿真与试验 [J]. 金刚石与磨料磨具工程,2023,43(2):265-271. doi: 10.13394/j.cnki.jgszz.2022.0142
LI Mengnan, DONG Zhiguo, ZHENG Zhixin, et al. Simulation and experiment of abrasive flow finishing characteristics of nozzle jetting hole runner [J]. Diamond & Abrasives Engineering,2023,43(2):265-271. doi: 10.13394/j.cnki.jgszz.2022.0142
|
[26] |
宋桂珍. 磨料流加工技术的理论分析和实验研究[D]. 太原: 太原理工大学, 2010.
SONG Guizhen. Theoretical analysis and experimental research on abrasive flow machining [D]. Taiyuan: Taiyuan University of Technology, 2010.
|
[27] |
付有志. 粘性挤压磨料流加工边缘效应及抑制策略 [D]. 大连:大连理工大学, 2018.
FU Youzhi. Edge effect and suppresion strategies in extrusion abrasive flow machining with viscous abrasive media [D]. Dalian: Dalian University of Technology, 2018.
|
[28] |
GRAVEL G, SEEWIG J. Ripple analysis of gearing measurement [J]. Verzahnungsmesstechnik: Praktisch Anwendungen Und Neue Losungen,2008,2053:49-59.
|