CN 41-1243/TG ISSN 1006-852X
Volume 44 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
SHI Sufang, ZHANG Baocai, WANG Xiayu, WANG Xinchang. The selection and simplification of physical models for simulation of abrasive flow machining uniformity[J]. Diamond & Abrasives Engineering, 2024, 44(5): 652-664. doi: 10.13394/j.cnki.jgszz.2023.0267
Citation: SHI Sufang, ZHANG Baocai, WANG Xiayu, WANG Xinchang. The selection and simplification of physical models for simulation of abrasive flow machining uniformity[J]. Diamond & Abrasives Engineering, 2024, 44(5): 652-664. doi: 10.13394/j.cnki.jgszz.2023.0267

The selection and simplification of physical models for simulation of abrasive flow machining uniformity

doi: 10.13394/j.cnki.jgszz.2023.0267
More Information
  • Received Date: 2023-12-06
  • Accepted Date: 2024-01-16
  • Rev Recd Date: 2024-01-02
  • Available Online: 2024-01-16
  • Objectives: With the rapid development of electric vehicles (EVs), the maximum rotational speed of EV motors has reached up to 20 000 r/min. Precision polishing of gear surfaces after grinding has become a promising method for improving the noise, vibration, and harshness (NVH) performance of EVs. Abrasive Flow Machining (AFM) is one of the key technologies for efficiently polishing complex gear tooth surfaces. Fixture design plays a critical role in achieving process objectives, reducing surface ripple and roughness, and minimizing damage to the tooth surface accuracy. This article addresses the trade-off between selecting physical models and balancing the accuracy and computational cost of simulation results. It analyzes the impact of different simulation models on the results, providing guidance for AFM fixture design and offering practical experience for fixture optimization in AFM gear processing. Methods: Simulations are conducted using media with different viscosities, viscosity models, and flow models, within the simplest and most typical slit model. Fluid pressure distribution, velocity vectors, wall shear, and streamline distribution cloud mapsare analyzed to reflect machining uniformity. Based on the conclusions drawn from slit model simulations, the simplest Newtonian fluid—water—is selected as the medium for AFM gear shaft processing simulations. The focus is on the uniformity of streamline distribution in the machining area to optimize fixture design. Results: The analysis of slit model simulation results reveals that different physical models have varying impacts on the outcomes: (1) The selection of viscosity models decisively affects the pressure distribution of low-viscosity media. The type of viscosity and turbulence models has little impact on pressure distribution, but it significantly affects the velocity vector, wall shear, and streamline distribution within the abrasive cylinder. (2) For low-viscosity media: implementing a non-Newtonian fluid model has a significant impact on the pressure distribution. Different flow models show marked differences only in wall shear force distributions. Various viscosity models yield different cloud map distributions, but they produce numerically similar values. (3) For high-viscosity media: simulations with non-Newtonian and Newtonian fluid models show consistent results. However, different flow models greatly influence the results, while various viscosity models lead to changes in all simulation results, except for pressure distribution and streamlines within the slit. Despite these variations, the streamline distribution in the processing area remains largely unchanged. Based on the consistency of streamline distribution, fixture design optimization for the AFM gear shaft is carried out, successfully achieving the goal of eliminating gear "ghost frequencies". Conclusions: Despite variations in the physical models, the simulation results exhibit similar trends in distribution, enabling consistent streamline distribution in the processing area. For low-viscosity media, a non-Newtonian fluid viscosity model with laminar flow simulation can be used, and the selection of viscosity models can be simplified based on the rheological characteristics of the actual abrasive flow medium. For high-viscosity media, setting appropriate viscosity values and using laminar flow simulation with a Newtonian fluid model yields consistent pressure and streamline distribution in the processing area, similar to adding viscosity and turbulence models. The slit model simulation results and AFM gear shaft processing tests both demonstrate that streamline information derived from simple physical models can significantly assist in AFM fixture design. In cases where the physical properties of the abrasive flow medium are uncertain—especially in complex flow paths prone to divergence—using the simplest Newtonian fluid, such as water, with laminar flow simulation can provide a reasonable streamline distribution in the processing area. This approach aids in the analysis of processing uniformity, significantly reduces simulation difficulty and costs, and accelerates the fixture design cycle, ultimately enhancing optimization efficiency.

     

  • loading
  • [1]
    GEORGE M A, KAMAT D V, KURIAN C P. Electronically tunable ACO based fuzzy FOPID controller for effective speed control of electric vehicle [J]. IEEE Access,2021,9:73392-73412. doi: 10.1109/ACCESS.2021.3080086
    [2]
    WU Z G, LI W L, TANG H Y, et al. Research on the calculation of rotor's convective heat transfer coefficient of high-speed drive motor for EVs based on multiple scenarios [J]. Journal of Electrical Engineering & Technology,2023,18(6):4245-4256. doi: 10.1007/s42835-023-01485-0
    [3]
    HAZRA S, REDDY J K. An aspect of noise, vibration, and harshness issues in electric vehicles [J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH,2021,6(1):23-33. doi: 10.4271/10-06-01-0002
    [4]
    幸人 中野, 直 富田, 真琴 瀬木, 等. パルプモウルド製ヘルムホルツ共鳴器によるEV低速走行時の耳位置騒音低減 [J]. 日本機械学会論文集,2022,88(911):21-00395. doi: 10.1299/transjsme.21-00395

    NAKANO S, TOMITA S, SEGI M, et al. Reduction of ear-position sound pressure at low speed in electric vehicles by pulp mold [J]. Transactions of the JSME (in Japanese),2022,88(911):21-00395. doi: 10.1299/transjsme.21-00395
    [5]
    占雨兰. 电驱动NVH特点以及研究现状 [J]. 时代汽车,2021,12:109-110, 121. doi: 10.3969/j.issn.1672-9668.2021.12.048

    ZHAN Yulan. Characteristics and research status of electric drive NVH [J]. Auto Time,2021,12:109-110, 121. doi: 10.3969/j.issn.1672-9668.2021.12.048
    [6]
    SWART D J, BEKKER A. The relationship between consumer satisfaction and psychoacoustics of electric vehicle signature sound [J]. Applied Acoustics,2019,145:167-175. doi: 10.1016/j.apacoust.2018.09.019
    [7]
    PADAVALA P, INAVOLU N, THAVEEDU J R, et al. Challenges in noise refinement of a pure electric passenger vehicle [J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH,2021,5(1):45-64. doi: 10.4271/10-05-01-0004
    [8]
    KAHNENBLEY T, GRAVEL G. Gear standards for reliable measurement of noise-causing tooth flank ripples [J]. Forschung im Ingenieurwesen,2019,83(3):537-543. doi: 10.1007/s10010-019-00366-1
    [9]
    SINGH S, KUMAR H, KUMAR S, et al. A systematic review on recent advancements in abrasive flow machining (AFM) [J]. Materials Today-Proceedings,2022,56:3108-3116. doi: 10.1016/j.matpr.2021.12.273
    [10]
    ZHANG B C, CHEN S F, KHIABANI N, et al. Research on the underlying mechanism behind abrasive flow machining on micro-slit structures and simulation of viscoelastic media [J]. Advances in Manufacturing,2022,10(3):382-396. doi: 10.1007/s40436-022-00395-0
    [11]
    SAMBHARIA J, MALI H S. Recent developments in abrasive flow finishing process: A review of current research and future prospects [J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2019,233(2):388-399. doi: 10.1177/0954405417731466
    [12]
    DIXIT N, SHARMA V, KUMAR P. Research trends in abrasive flow machining: A systematic review [J]. Journal of Manufacturing Processes,2021,64:1434-1461. doi: 10.1016/j.jmapro.2021.03.009
    [13]
    ZOU T G, YAN Q D, WANG L X, et al. Research on quality control of precision machining straight internal gear by abrasive flow based on large eddy simulation [J]. The International Journal of Advanced Manufacturing Technology,2022,119(7/8):5315-5334. doi: 10.1007/s00170-021-08453-w
    [14]
    ZHAO W H, LIU J H, WANG L X, et al. Numerical simulation and experimental research on abrasive flow machining of helical internal gear [J]. International Journal of Abrasive Technology (IJAT),2024,12(2). doi: 10.1504/IJAT.2024.10065531
    [15]
    FU Y Z, GAO H, YAN Q S, et al. Rheological characterisation of abrasive media and finishing behaviours in abrasive flow machining [J]. The International Journal of Advanced Manufacturing Technology,2020,107(7):3569-3580. doi: 10.1007/s00170-020-05288-9
    [16]
    ZHANG B C, CHEN S F, WANG X C. Machining uniformity and property change of abrasive media for micro-porous structures [J]. Journal of Materials Processing Technology,2022,307:117675. doi: 10.1016/j.jmatprotec.2022.117675
    [17]
    PAL P, JAIN K K. Computational simulation of abrasive flow machining for two dimensional models [J]. Materials Today: Proceedings,2018,5(5):12969-12983. doi: 10.1016/j.matpr.2018.02.282
    [18]
    ZHANG B C, QIAO Y, KHIABANI N, et al. Study on rheological behaviors of media and material removal mechanism for abrasive flow machining (AFM) micro structures and corresponding simulations [J]. Journal of Manufacturing Processes,2022,73:248-259. doi: 10.1016/j.jmapro.2021.11.006
    [19]
    KUMAR M, KUMAR V, KUMAR A, et al. CFD analysis of MR fluid applied for finishing of gear in MRAFF process [J]. Materials Today: Proceedings,2021,45:4677-4683. doi: 10.1016/j.matpr.2021.01.116
    [20]
    CHENG K C, WANG A C, CHEN K Y, et al. Study of the polishing characteristics by abrasive flow machining with a rotating device [J]. Processes,2022,10(7):1362. doi: 10.3390/pr10071362
    [21]
    LI J Y, WANG L X, ZHANG H F, et al. Mechanism research and discussion of the quality of precision machining of a fifth-order variable-diameter pipe using abrasive flow [J]. Strojniški Vestnik – Journal of Mechanical Engineering,2020,66(6):358-374. doi: 10.5545/sv-jme.2020.6554
    [22]
    SAMOILENKO M, LANIK G, BRAILOVSKI V. Towards the determination of machining allowances and surface roughness of 3D-printed parts subjected to abrasive flow machining [J]. Journal of Manufacturing and Materials Processing,2021,5(4):111. doi: 10.3390/jmmp5040111
    [23]
    高航, 付有志, 王宣平, 等. 螺旋面磨料流光整加工仿真与试验 [J]. 浙江大学学报(工学版),2016,50(5):920-926. doi: 10.3785/j.issn.1008973X.2016.05.015

    GAO Hang, FU Youzhi, WANG Xuanping, et al. Simulations and experiments on finishing process of screw surface by using abrasive flow machining [J]. Journal of Zhejiang University (Engineering Science),2016,50(5):920-926. doi: 10.3785/j.issn.1008973X.2016.05.015
    [24]
    郑志鑫, 董志国, 李孟楠, 等. 涡轮叶片内冷通道的磨料流光整加工特性 [J]. 金刚石与磨料磨具工程,2023,43(1):110-117. doi: 10.13394/j.cnki.jgszz.2022.0093

    ZHENG Zhixin, DONG Zhiguo, LI Mengnan, et al. Abrasive flow finishing characteristics of internal cooling channel of turbine blade [J]. Diamond & Abrasives Engineering,2023,43(1):110-117. doi: 10.13394/j.cnki.jgszz.2022.0093
    [25]
    李孟楠, 董志国, 郑志鑫, 等. 喷油嘴喷孔流道磨料流光整特性仿真与试验 [J]. 金刚石与磨料磨具工程,2023,43(2):265-271. doi: 10.13394/j.cnki.jgszz.2022.0142

    LI Mengnan, DONG Zhiguo, ZHENG Zhixin, et al. Simulation and experiment of abrasive flow finishing characteristics of nozzle jetting hole runner [J]. Diamond & Abrasives Engineering,2023,43(2):265-271. doi: 10.13394/j.cnki.jgszz.2022.0142
    [26]
    宋桂珍. 磨料流加工技术的理论分析和实验研究[D]. 太原: 太原理工大学, 2010.

    SONG Guizhen. Theoretical analysis and experimental research on abrasive flow machining [D]. Taiyuan: Taiyuan University of Technology, 2010.
    [27]
    付有志. 粘性挤压磨料流加工边缘效应及抑制策略 [D]. 大连:大连理工大学, 2018.

    FU Youzhi. Edge effect and suppresion strategies in extrusion abrasive flow machining with viscous abrasive media [D]. Dalian: Dalian University of Technology, 2018.
    [28]
    GRAVEL G, SEEWIG J. Ripple analysis of gearing measurement [J]. Verzahnungsmesstechnik: Praktisch Anwendungen Und Neue Losungen,2008,2053:49-59.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (338) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return