CN 41-1243/TG ISSN 1006-852X
Volume 44 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
CHENG Xiaozhe, XU Yan, MU Yunchao, HAN Jinghe, LIU Tao. Exploration of ceramic binder diamond aggregated abrasives[J]. Diamond & Abrasives Engineering, 2024, 44(1): 31-38. doi: 10.13394/j.cnki.jgszz.2023.0022
Citation: CHENG Xiaozhe, XU Yan, MU Yunchao, HAN Jinghe, LIU Tao. Exploration of ceramic binder diamond aggregated abrasives[J]. Diamond & Abrasives Engineering, 2024, 44(1): 31-38. doi: 10.13394/j.cnki.jgszz.2023.0022

Exploration of ceramic binder diamond aggregated abrasives

doi: 10.13394/j.cnki.jgszz.2023.0022
More Information
  • Received Date: 2023-02-05
  • Rev Recd Date: 2023-04-15
  • Available Online: 2023-11-06
  • The diamond powder manufacturing industry at present grapples with a large backlog of fine-grained diamond powders. To enhance its applicability, agglomerated abrasive samples were manufactured with aluminum-borosilicate binder as the bonding agent, Si powder and Ti powder as additives. These agglomerated abrasive samples were then added into an aluminum-borosilicate binder to create ceramic bond samples. The bending strength, phase composition, and microscopic morphology of the samples were analyzed. The results show that the Al-B-Si binder, when combined with Si or Ti, can agglomerate diamond. When the mass fraction of Si or Ti in the agglomerated abrasives is 10.0%, the bending strength of the ceramic bond samples prepared is the largest. The bending strength of the agglomerated abrasive sample with Si added is 43.74 MPa. When the mass fraction of Si or Ti exceeds 10.0%, a large number of Si or TiO2 peaks appear in the agglomerated abrasive samples, and its bending strength decreases sharply. Compared with the agglomerated abrasive sample added with Ti, the agglomerated abrasive sample added with Si has a larger particle size and a more uniform particle size distribution. 1~2 μm abrasives can be aggregated into 5~10 μm abrasives with the addition of Al-B-Si binder with Si.

     

  • loading
  • [1]
    CHOUDHARY D, BELLARE J. Manufacture of gem quality diamonds: A review [J]. Ceramics International,2000,26(1):73-85. doi: 10.1016/S0272-8842(99)00022-X
    [2]
    ZHANG Y, RHEE K Y, HUI D, et al. A critical review of nanodiamond based nanocomposites: Synthesis, properties and applications [J]. Composites Part B: Engineering,2018,143:19-27. doi: 10.1016/j.compositesb.2018.01.028
    [3]
    张书达, 张文刚, 王松. 金刚石微粉和抛光液的制造工艺检测技术及应用(上) [J]. 超硬材料工程,2012,24(1):24-28.

    ZHANG Shuda, ZHANG Wengang, WANG Song. Manufacturing process and testing technology for diamond micron powder and diamond polishing suspension [J]. Superhard Material Engineering,2012,24(1):24-28.
    [4]
    吴元康. 纳米晶多晶体金刚石超细微粉在表面技术中的应用 [J]. 表面技术,2007,36(6):64-65.

    WU Yuankang. Nano-polycrystal diamond superfine powders and its application in surface techniques [J]. Surface Technology,2007,36(6):64-65.
    [5]
    王艳辉, 李晓虎, 常锐, 等. 金刚石微粉表面镀覆对线锯的关键作用分析 [J]. 金刚石与磨料磨具工程,2013(3):26-30.

    WANG Yanhui, LI Xiaohu, CHANG Rui, et al. Effect of coated diamond micro powder on diamond wire saw manufacturing technology [J]. Diamond & Abrasives Engineering,2013(3):26-30.
    [6]
    SHAMES A I, MOGILYANSKY D, PANICH A M, et al. XRD, NMR, and EPR study of polycrystalline micro- and nano-diamonds prepared by a shock wave compression method [J]. Physica Status Solidi A,2015,212(11):2400-2409. doi: 10.1002/pssa.201532154
    [7]
    SHIMAOKA T, KOIZUMI S, TANAKA M M. Diamond photovoltaic radiation sensor using pn junction [J]. Applied Physics Letters,2018,113(9):093504.1-093504.4.
    [8]
    YANG S, WAN X, WEI K, et al. A new sustainable concept for silicon recovery from diamond wire saw silicon powder waste: Source control and comprehensive conservation [J]. Journal of Cleaner Production,2022,358:131961.1-131961.13.
    [9]
    周波, 毛剑波. 金刚石线锯质量检验 [J]. 金刚石与磨料磨具工程,2017,37(2):73-77.

    ZHOU Bo, MAO Jianbo. Quality inspection method for diamond wire saw [J]. Diamond & Abrasives Engineering,2017,37(2):73-77.
    [10]
    WU X, TAN Y, WU H, et al. Structural modification of diamond-wire-cut multicrystalline Si by Cu-catalyzed chemical etching for surface structuring [J]. Thin Solid Films,2022,750:139199-139205. doi: 10.1016/j.tsf.2022.139199
    [11]
    PANIGRAHI N, CHAINI R, NAYAK A, et al. Impact of milling time and method on particle size and surface morphology during nano particle synthesis from α-Al2O3 [J]. 2018, 5(9): 20727-20735.
    [12]
    SHIN H, LEE S, JUNG H S, et al. Effect of ball size and powder loading on the milling efficiency of a laboratory-scale wet ball mill [J]. Ceramics International,2013,39(8):8963-8968. doi: 10.1016/j.ceramint.2013.04.093
    [13]
    NUNES D, LIVRAMENTO V, MARDOLCRA U V, et al. Tungsten nanodiamond composite powders produced by ball milling [J]. Journal of Nuclear Materials,2012,426(1/2/3):115-119. doi: 10.1016/j.jnucmat.2012.03.028
    [14]
    FADDA S, CINCOTTI A, CONCAS A, et al. Modelling breakage and reagglomeration during fine dry grinding in ball milling devices [J]. Chemical Engineering Transactions,2009,17:687-692.
    [15]
    CHEN J, SUN T, SU J, et al. A novel agglomerated diamond abrasive with excellent micro-cutting and self-sharpening capabilities in fixed abrasive lapping processes [J]. Wear,2021,464/465:203531-203539. doi: 10.1016/j.wear.2020.203531
    [16]
    WANG Z, NIU F, WANG Z, et al. Friction and wear characteristics of agglomerated diamond abrasives and lapping performance of fixed agglomerated diamond pads [J]. Wear,2021,470/471(1):203598-203611.
    [17]
    NIU F, WANG K, SUN T, et al. Lapping performance of mixed-size agglomerated diamond abrasives in fixed abrasives pads [J]. Diamond and Related Materials,2021,118:108499-108458. doi: 10.1016/j.diamond.2021.108499
    [18]
    朱永伟, 沈琦, 王子琨, 等. 多晶金刚石固结磨料研磨垫精研石英玻璃的性能探索 [J]. 红外与激光工程,2016,45(10):6-10.

    ZHU Yongwei, SHEN Qi, WANG Zikun, et al. Lapping performance on quartz glass of fixed abrasive pad embedded with multi-grain diamond grits [J]. Infrared and Laser Engineering,2016,45(10):6-10.
    [19]
    陈春晖, 陈哲, 刘一波, 等. 类多晶(堆积)磨料的研究现状与应用 [J]. 超硬材料工程,2020,32(2):6-11.

    CHEN Chunhui, CHEN Zhe, LIU Yibo, et al. Research status and application of agglomerate abrasives [J]. Superhard Material Engineering,2020,32(2):6-11.
    [20]
    栗正新, 王兆武. 堆积磨料的研究开发与应用 [J]. 中原工学院学报,2016,27(3):4-8. doi: 10.3969/j.issn.1671-6906.2016.03.012

    LI Zhengxin, WANG Zhaowu. Research and application of stacked abrasives [J]. Journal of Zhongyuan University of Technology,2016,27(3):4-8. doi: 10.3969/j.issn.1671-6906.2016.03.012
    [21]
    SHAO W Z, IVANOV V V, ZHEN L, et al. A study on graphitization of diamond in copper–diamond composite materials [J]. Materials Letters,2004,58(1/2):146-149.
    [22]
    FEDOSEEV D V, VNUKOV S P, BUKHOVETS V L, et al. Surface graphitization of diamond at high temperatures [J]. Surface and Coatings Technology,1986,28(2):207-214. doi: 10.1016/0257-8972(86)90059-9
    [23]
    CHENG X, WANG Y, LIANG Y, et al. Avoiding the oxidation of SiC in SiC-borosilicate glass composites by adding zinc [J]. Corrosion Science,2015,90:413-419. doi: 10.1016/j.corsci.2014.10.039
    [24]
    ZHANG X, WANG Y, ZANG J, et al. Improvement of thermal stability of diamond by adding Ti powder during sintering of diamond/borosilicate glass composites [J]. Journal of the European Ceramic Society,2011,31(10):1897-1903. doi: 10.1016/j.jeurceramsoc.2011.04.009
    [25]
    关振铎. 无机材料物理性能[M]. 北京: 清华大学出版社, 1992.

    GUAN Zhenduo. Physical properties of inorganic materials [M]. Beijing: Tsinghua University Press, 1992.
    [26]
    田英良, 孙诗兵. 新编玻璃工艺学 [M]. 北京: 中国轻工业出版社, 2009.

    TIAN Yingliang, SUN Shibing. New glass technology [M]. Beijing: China Light Industry Press, 2009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (503) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return