CN 41-1243/TG ISSN 1006-852X
Volume 43 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
BAI Fuhou, LIAO Yanling, XUAN Chuang, ZHANG Fenglin. Preparation of vitrified bond diamond wheel based on Bi2O3-B2O3 glass system and its grinding performance on monocrystalline silicon[J]. Diamond & Abrasives Engineering, 2023, 43(4): 432-439. doi: 10.13394/j.cnki.jgszz.2022.0137
Citation: BAI Fuhou, LIAO Yanling, XUAN Chuang, ZHANG Fenglin. Preparation of vitrified bond diamond wheel based on Bi2O3-B2O3 glass system and its grinding performance on monocrystalline silicon[J]. Diamond & Abrasives Engineering, 2023, 43(4): 432-439. doi: 10.13394/j.cnki.jgszz.2022.0137

Preparation of vitrified bond diamond wheel based on Bi2O3-B2O3 glass system and its grinding performance on monocrystalline silicon

doi: 10.13394/j.cnki.jgszz.2022.0137
More Information
  • Received Date: 2022-08-26
  • Accepted Date: 2022-12-28
  • Rev Recd Date: 2022-12-04
  • To solve the problem of high sintering temperature of vitrified bond, a novel low- temperature vitrified bond based on Bi2O3-B2O3 glass system was proposed. The effect of nano-SiC and nano-ZrO2 on the phase composition, fluidity and mechanical properties of the vitrified bond were analyzed. Additionally, the effect of adding walnut shell powder as a pore-forming agent on the microstructure of the vitrified bond diamond grinding wheel was explored. A vitrified bond diamond cup grinding wheel based on Bi2O3-B2O3 glass system was prepared, and its grinding performance on monocrystalline silicon wafer was tested. The results show that adding nano-SiC powder leads to the formation of Bi in the vitrified bond and destroys the [BiO4] glass network of vitrified bond. The fluidity of the vitrified bond decreases with the addition of nano-SiC and nano- ZrO2. Furthermore, the fluidity, flexural strength and hardness of the vitrified bond increase as the sintering temperature increases. The flexural strength and the hardness of the vitrified bond reach to their highest value at 560 ℃. With the increase of the content of the pore-forming agent, the amount of large pores in the grinding wheel increases significantly and the size becomes larger. The prepared Bi2O3-B2O3 vitrified bond diamond cup grinding wheel (800 mesh or M10/20) was used to grind monocrystalline silicon wafer under specific conditions (linear speed: 12.56 m/s, workpiece speed: 5.23 m/s, and feed speed: 0.1 μm/s). The grinding ratio reaches 790, and the surface roughness of the monocrystalline silicon wafer is 0.16 μm.

     

  • loading
  • [1]
    CHEN S P, LIU X P, WAN L, et al. Effect of V2O5 addition on the wettability of vitrified bond to diamond abrasive and grinding performance of diamond wheels [J]. Diamond and Related Materials,2019,102:107672. doi: 10.1016/j.diamond.2019.107672
    [2]
    ZHANG X H, WANG Y H, ZANG J B, et al. Improvement of thermal stability of diamond by adding Ti powder during sintering of diamond/borosilicate glass composites [J]. Journal of the European Ceramic Society,2011,31(10):1897-1903. doi: 10.1016/j.jeurceramsoc.2011.04.009
    [3]
    HOU Y G, QIAO G Y, SHANG Y, et al. Effect of porosity on the grinding performance of vitrified bond diamond wheels for grinding PCD blades [J]. Ceramics International,2012,38(8):6215-6220. doi: 10.1016/j.ceramint.2012.04.074
    [4]
    ZHOU H, GUO M, WANG X. Ultraprecision grinding of silicon wafers using a newly developed diamond wheel [J]. Materials Science in Semiconductor Processing,2017,68:238-244. doi: 10.1016/j.mssp.2017.06.031
    [5]
    张红轩. 金刚石砂轮磨削蓝宝石晶片加工过程实验研究 [D]. 广州: 广东工业大学, 2020.

    ZHANG Hongxuan. Experimental study of sapphire wafer grinding process with diamond wheel [D]. Guangzhou: Guangdong University of Technology. 2020.
    [6]
    RABIEY M, JOCHUM N, KUSTER F. High performance grinding of zirconium oxide (ZrO2) using hybrid bond diamond tools [J]. CIRP Annals - Manufacturing Technology,2013,62(1):343-346. doi: 10.1016/j.cirp.2013.03.073
    [7]
    万明. RO及R2O对金刚石砂轮陶瓷结合剂性能的影响 [D]. 秦皇岛: 燕山大学, 2018.

    WANG Ming. Effect of RO and R2O on the properties of vitrified bond diamond wheel [D]. Qinhuangdao: Yanshan University, 2018.
    [8]
    GUO B J, HONG Y. Influence of Li2O addition on the performance of vitrified bond and vitrified diamond composites [J]. Journal of Wuhan University of Technology (Materials Science),2020,35(04):699-705. doi: 10.1007/s11595-020-2310-9
    [9]
    WANG X Z, MA Z L, SUN X, et al. Effects of ZrO2 and Y2O3 on physical and mechanical properties of ceramic bond and ceramic CBN composites [J]. International Journal of Refractory Metals and Hard Materials,2018,75:18-24. doi: 10.1016/j.ijrmhm.2018.03.016
    [10]
    LIN K H, PENG S F, LIN S T. Sintering parameters and wear performances of vitrified bond diamond grinding wheels [J]. International Journal of Refractory Metals & Hard Materials,2007,25(1):25-31.
    [11]
    左宏森, 关春龙. 造孔剂对金属结合剂金刚石磨具力学性能的影响 [J]. 金刚石与磨料磨具工程,2009(5):82-85. doi: 10.3969/j.issn.1006-852X.2009.05.018

    ZUO Hongsen, GUAN Chunlong. Effect of pore-forming agent on mechanical properties of metal-bonded diamond abrasive tools [J]. Diamond & Abrasive Engineering,2009(5):82-85. doi: 10.3969/j.issn.1006-852X.2009.05.018
    [12]
    LV X F, LI Z H, ZHU Y M, et al. Effect of PMMA pore former on microstructure and mechanical properties of vitrified bond CBN grinding wheels [J]. Ceramics International,2013,39(2):1893-1899. doi: 10.1016/j.ceramint.2012.08.038
    [13]
    GUO W, FU L, HE P, et al. Low-temperature brazing of alumina ceramics with bismuth-borate glass in air [J]. Materials Characterization,2019,149:158-164. doi: 10.1016/j.matchar.2019.01.020
    [14]
    LIN P P, LIN T, HE P, et al. Investigation of microstructure and mechanical property of Li–Ti ferrite/Bi2O3-B2O3-SiO2 glass/Li–Ti ferrite joints reinforced by FeBi5Ti3O15 whiskers [J]. Journal of the European Ceramic Society,2015,35(9):2453-2459. doi: 10.1016/j.jeurceramsoc.2015.03.019
    [15]
    GUO W, WANG T, LIN T S, et al. Bismuth borate zinc glass braze for bonding sapphire in air [J]. Materials Characterization,2018,137:67-76. doi: 10.1016/j.matchar.2018.01.002
    [16]
    CHEN H Y, REN X W, GUO W, et al. Microstructures and mechanical properties of brazed Al2O3/Cu joints with bismuth glass [J]. Ceramics International,2019,45(13):16070-16077. doi: 10.1016/j.ceramint.2019.05.123
    [17]
    LIU Y, DONG L L, LU J W, et al. Microstructure and mechanical properties of SiC nanowires reinforced titanium matrix composites [J]. Journal of Alloys and Compounds,2020,819:152953. doi: 10.1016/j.jallcom.2019.152953
    [18]
    田英良, 孙诗兵. 新编玻璃工艺学 [M]. 北京: 中国轻工业出版社, 2009, 63-78.

    TIAN Yingliang, SUN Shibing. New glass technology [M]. Beijing: China Light Industry Press, 2009, 63-78.
    [19]
    侯永改, 田久根, 马加加. 纳米氧化锆对金刚石磨具用陶瓷结合剂结构与性能的影响研究 [J]. 硅酸盐学报,2015,34(2):530-534. doi: 10.16552/j.cnki.issn1001-1625.2015.02.025

    HOU Yongai, TIAN Jiugen, MA Jiajia. Effect of nano-ZrO2 on properties and structure of vitrified bond for diamond grinding tools [J]. Journal of the Chinese Ceramic Society,2015,34(2):530-534. doi: 10.16552/j.cnki.issn1001-1625.2015.02.025
    [20]
    AGARWAL S, RAO P V. A probabilistic approach to predict surface roughness in ceramic grinding [J]. International Journal of Machine Tools & Manufacture: Design, Research and Application,2005,45(6):606-616. doi: 10.1016/j.ijmachtools.2004.10.005
    [21]
    HECHER R L, LIANG S Y. Predictive modeling of surface roughness in grinding [J]. International Journal of Machine Tools & Manufacture: Design, Research and Application,2003,43(8):755-761. doi: 10.1016/S0890-6955(03)00055-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article views (333) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return