CN 41-1243/TG ISSN 1006-852X
ZHU Yanxin, ZHAO Feng. Precision grinding of cemented carbide ball valves by resin diamond wheels with different pore-forming agents[J]. Diamond & Abrasives Engineering, 2024, 44(2): 199-205. doi: 10.13394/j.cnki.jgszz.2023.0116
Citation: ZHU Yanxin, ZHAO Feng. Precision grinding of cemented carbide ball valves by resin diamond wheels with different pore-forming agents[J]. Diamond & Abrasives Engineering, 2024, 44(2): 199-205. doi: 10.13394/j.cnki.jgszz.2023.0116

Precision grinding of cemented carbide ball valves by resin diamond wheels with different pore-forming agents

doi: 10.13394/j.cnki.jgszz.2023.0116
More Information
  • Received Date: 2023-05-19
  • Rev Recd Date: 2023-08-17
  • Available Online: 2023-11-06
  • To improve the machining effect of cemented carbide ball valves, pore-forming agents were introduced into resin diamond wheels. The mechanical properties, microstructures, and grinding performances of the wheels were analyzed, and the effects of hollow glass ball pore-forming agent and plastic ball pore-forming agent on the performances of resin diamond wheels were studied. The results show that the bending strength of the grinding wheel decreases gradually with the increase in the content of pore-forming agent, and the influence of the two pore-forming agents on bending strength is basically the same. The hardness of the grinding wheel also decreases with the increase in pore-forming agent content, but the influence of the hollow glass ball pore-forming agent on the hardness of the grinding wheel is significantly greater than that of the plastic ball. The addition of pore-forming agent significantly improves the sharpness of the grinding wheel. The comprehensive performance of the grinding wheels is best when the volume fraction of hollow glass balls is 15% and the volume fraction of plastic balls is 20%, but the latter has better overall performance than the former.

     

  • [1]
    赖海瑜, 杨志中. 球阀球体研磨装置改进 [J]. 阀门,2006(2):34-35.

    LAI Haiyu, YANG Zhizhong. The improvement of the grinder for ball of the ball valve [J]. Valve,2006(2):34-35.
    [2]
    尚玉来, 金瑞建, 金克雨, 等. 高温耐磨球阀密封面涂层强化工艺的研究 [J]. 阀门,2022(1):52-57.

    SHANG Yulai, JIN Ruijian, JIN Keyu, et al. Research on strengthening technology of sealing surface coating of high temperature wear-resistant ball valve [J]. Valve,2022(1):52-57.
    [3]
    苏伟, 颜娟. 高精度硬质合金球阀球体加工工艺研究 [J]. 硬质合金,2021,38(5):351-356.

    SU Wei, YAN Juan. Research on processing technology of high precision cemented carbide ball of ball valves [J]. Cemented Carbide,2021,38(5):351-356.
    [4]
    张文华, 高兰, 朱剑飞. 固定阀球密度对抽油泵进油的影响 [J]. 石油钻采工艺,2003(Z1):33-35.

    ZHANG Wenhua, GAO Lan, ZHU Jianfei. Influence of pump, s absorbing oil by density of fixed-valve, s [J]. Oli Drilling & Production Technology,2003(Z1):33-35.
    [5]
    陶嶙, 陶宪之, 杨燕怡, 等. 抽油泵阀球失效分析 [J]. 石油机械,1986(11):10-15.

    TAO Lin, TAO Xianzhi, YANG Yanyi, et al. Failure analysis of valve balls of sucker rod pumps [J]. China Petroleum Machinery,1986(11):10-15.
    [6]
    ZHANG B, UEMATSU T, NAKAJIMA A. High efficiency and precision grinding of Si3N4 ceramic balls aided by magnetic fluid support using diamond wheels [J]. JSME International Journal Series C,1998,41(3):499-505. doi: 10.1299/jsmec.41.499
    [7]
    CHANG F Y, CHILDS T H C. Non-magnetic fluid grinding [J]. Wear,1998,223(1/2):7-12.
    [8]
    CHILDS T H C, MOSS D J. Grinding ratio and cost issues in magnetic and non-magnetic fluid grinding [J]. CIRP Annals,2000,49(1):255-261.
    [9]
    孙永安, 李县辉. 国外陶瓷球加工技术及其应用 [J]. 陶瓷学报,2002(2):145-148.

    SUN Yong’an, LI Xianhui. Machining technology and applications for ceramic balls in abroad [J]. Journal of Ceramics,2002(2):145-148.
    [10]
    黄传真, 杨为清, 艾兴, 等. 新型陶瓷轴承研究的现状与展望 [J]. 中国陶瓷工业,1999(2):27-29.

    HUANG Chuanzhen, YANG Weiqing, AI Xing, et al. The present situation and future prospect of study on advanced ceramic bearing [J]. China Ceramic Industry,1999(2):27-29.
    [11]
    YUAN J L, LV B H, ZHOU Z Z, et al. Parameters optimization on the lapping process for advanced ceramics by applying taguchi method [J]. Materials Science Forum,2006(532/533):487-491.
    [12]
    LV B H, YUAN J L, YAO Y X, et al. Research on ultra-precision lapping technology for super-smooth surface of KTP crystal [J]. Key Engineering Material,2006(315/316):284-288.
    [13]
    文灏. 钨钴类硬质合金球行星研磨及其装备研究 [D]. 长沙: 中南大学, 2010.

    WEN Hao. Research on Planetary grinding and equipment for tungsten [D]. Changsha: Central South University, 2010.
    [14]
    文灏, 刘舜尧. 硬质合金球行星研磨加工技术 [J]. 轴承,2009(11):12-15.

    WEN Hao, LIU Shunyao. Planetary lapping technology for cemented carbide balls [J]. Bearing,2009(11):12-15.
    [15]
    何文平. 大口径球面阀芯研磨新工艺与新机构设计研究 [J]. 机械科学与技术,2009(5):652-656.

    HE Wenping. Research on new grinding technology and the device design of large caliber spherical surface valve core [J]. Mechanical Seience and Technology for Aerospace Engineering,2009(5):652-656.
    [16]
    周晓玉. 超细晶粒硬质合金磨削实验研究 [D]. 长沙: 湖南大学, 2013.

    ZHOU Xiaoyu. The experimental research on grinding of ultra-fine grain cemented carbide [D]. Changsha: Hunan University, 2013.
    [17]
    原一高, 张肖肖, 丁健俊, 等. 磨削参数对超细硬质合金磨削表面粗糙度的影响 [J]. 工具技术,2012,46(5):41-44.

    YUAN Yigao, ZHANG Xiaoxiao, DING Jianjun, et al. Influence of grinding parameters on ground surface roughness of ultrafine-grained WC-Co cemented carbides [J]. Tool Engineering,2012,46(5):41-44.
    [18]
    SHARIF S, RAHIM E A. Performance of coated- and uncoated- carbide tools when drilling titanium alloy Ti-6Al-4V [J]. Journal of Materials Processing Technology,2007,185(1/2/3):72-76.
    [19]
    师超钰, 朱建辉, 冯兵强, 等. 硬质合金磨削加工中树脂和金刚石的影响研究 [J]. 组合机床与自动化加工技术,2017(11):138-140, 144.

    SHI Chaoyu, ZHU Jianhui, FENG Bingqiang, et al. Experimental research on resins and diamonds influencing grinding performances for cemented carbide [J]. Modular Machine Tool & Automatic Manufacturing Technique,2017(11):138-140, 144.
    [20]
    吴逸涵. WC基硬质合金的性能及其在硬密封球阀的应用研究 [D]. 兰州: 兰州理工大学, 2017.

    WU Yihan. Performance of WC-based carbide and its application in hard seal ball valves [D]. Lanzhou: Lanzhou University of Technology, 2017.
    [21]
    华建宇, 李林. 硬密封球阀球体研磨装置 [J]. 阀门,2008(2):27-28.

    HUA Jianyu, LI Ling. Whet device development of small size and hard seal ball valve [J]. Valve,2008(2):27-28.
    [22]
    王吉慧. 浅析金属密封球阀球体加工工艺 [J]. 科技资讯,2019,17(16):34-66.

    WANG Jihui. Analysis of the processing technology for metal sealed ball valve spheres [J]. Science & Technology Information,2019,17(16):34-66.
    [23]
    史林峰, 韩雪, 郜永娟, 等. 氧化铝空心球对树脂结合剂金刚石磨盘磨削蓝宝石的影响 [J]. 金刚石与磨料磨具工程,2017,37(3):15-18.

    SHI Linfeng, HAN Xue, GAO Yongjuan, et al. Effect of Al2O3 hollow sphere on properties of resin bond diamond disc in sapphire grinding [J]. Diamond & Abrasives Engineering,2017,37(3):15-18.
  • Relative Articles

    [1]ZHANG Xiaohong, HE Tianzhongsen, WEN Dongdong, LI Chao, WANG Zhuoran, LONG Yixiang. Experimental evaluation of grinding zirconia ceramics with leaf vein bionic fractal textured diamond grinding wheel[J]. Diamond & Abrasives Engineering, 2024, 44(3): 374-381. doi: 10.13394/j.cnki.jgszz.2023.0131
    [2]CAO Guixin, DONG Zhiguo, ZHANG Zehua, HOU Zhangmin. Model construction and experimental research on end grinding force of SiCp/Al composites[J]. Diamond & Abrasives Engineering, 2023, 43(3): 340-347. doi: 10.13394/j.cnki.jgszz.2022.0112
    [3]BAI Fuhou, LIAO Yanling, XUAN Chuang, ZHANG Fenglin. Preparation of vitrified bond diamond wheel based on Bi2O3-B2O3 glass system and its grinding performance on monocrystalline silicon[J]. Diamond & Abrasives Engineering, 2023, 43(4): 432-439. doi: 10.13394/j.cnki.jgszz.2022.0137
    [4]FENG Ru. Study on grinding force in grinding titanium alloy with diamond grinding wheel[J]. Diamond & Abrasives Engineering, 2022, 42(2): 193-200. doi: 10.13394/j.cnki.jgszz.2021.0120
    [5]REN Xiaoke, HUANG Hui, SU Zhenfa. Experimental study on grinding force in axial feed grinding of cemented carbide with diamond grinding wheel[J]. Diamond & Abrasives Engineering, 2022, 42(5): 567-577. doi: 10.13394/j.cnki.jgszz.2022.0040
    [6]XUAN Chuang, WANG Chaochao, BAI Fuhou, ZHANG Fenglin. Vitrified bond diamond grinding wheel based on hollow corundum microspheres[J]. Diamond & Abrasives Engineering, 2022, 42(4): 442-448. doi: 10.13394/j.cnki.jgszz.2021.4001
    [7]ZHANG Bisheng, WU Yao, QU Meina. Evaluation of grinding performance for micromotor rotor shaft by microcrystalline ceramic corundum grinding wheel[J]. Diamond & Abrasives Engineering, 2022, 42(5): 578-584. doi: 10.13394/j.cnki.jgszz.2021.5004
    [8]LI Dashui, DU Xiaoxu, CAO Jianfeng, CHEN Huailiang, WANG Siliang, WU Leitao, YANG Songcan, HAO Suye, YANG Jianfeng. Application of water-soluble pore-forming agent in ultra-thin resin cutting grinding wheel[J]. Diamond & Abrasives Engineering, 2022, 42(4): 449-456. doi: 10.13394/j.cnki.jgszz.2021.4002
    [9]LUO Miaodi, ZHAO Jinwei, DING Yulong, MIAO Weipeng, BAO Hua, ZHANG Yunhe. Effect of abrasive mass fraction on grinding performance of diamond grindingwheel for grinding silicon wafer[J]. Diamond & Abrasives Engineering, 2021, 41(6): 80-84. doi: 10.13394/j.cnki.jgszz.2021.6.0014
    [10]YAN Xinlin, XIAO Bo, GAO Xianzhe, XIAO Bing, ZHANG Yiquan. Experimental research on brazed diamond grinding wheel for rail grinding performance[J]. Diamond & Abrasives Engineering, 2020, 40(6): 42-46. doi: 10.13394/j.cnki.jgszz.2020.6.0008
    [11]LI Mingcong, XIANG Gangqiang, LI Weixiong, ZHANG Fenglin, ZHOU Yumei, LONG Weimin. Research on resin-bonded diamond grinding wheel based on brazing-coated diamond and its performances[J]. Diamond & Abrasives Engineering, 2020, 40(6): 36-41. doi: 10.13394/j.cnki.jgszz.2020.6.0007
    [12]CHEN Zhe, CHEN Chunhui, LIU Yibo, XU Yanjun, LIU Wei, HUANG Xia, LI Yapen, KONG Shuaifei. Grinding YG8 cemented carbide with resin bond grinding wheels made of diamond agglomerate abrasive[J]. Diamond & Abrasives Engineering, 2020, 40(6): 25-30. doi: 10.13394/j.cnki.jgszz.2020.6.0005
    [13]HAN Zhijing, XU Sankui, HAN Ping, ZOU Wenjun. Effect of hexagonal boron nitride content on properties of iron-based diamond abrasives[J]. Diamond & Abrasives Engineering, 2019, 39(4): 75-79. doi: 10.13394/j.cnki.jgszz.2019.4.0013
    [14]DING Yulong, HUI Zhen, XIONG Huajun, ZHAO Yanjun, BAO Hua. Effect of calcium fluoride on grinding performance of resin-bonded diamondgrinding wheel for silicon wafer[J]. Diamond & Abrasives Engineering, 2019, 39(1): 36-40. doi: 10.13394/j.cnki.jgszz.2019.1.0007
    [15]HUI Zhen, ZHAO Yanjun, ZHANG Gaoliang, ZHAO Jiong, DING Yulong, YE Tengfei, SUN Guannan, XIONG Huajun. Influence of pore-forming agent content on grinding performance of resin-bonded silicon wafer thinning wheel[J]. Diamond & Abrasives Engineering, 2019, 39(4): 62-65. doi: 10.13394/j.cnki.jgszz.2019.4.0010
    [16]JIANG Zhijin. Research on performance of precision grinding cemented carbidecutting tools with heavy grinding wheel[J]. Diamond & Abrasives Engineering, 2018, 38(2): 42-46. doi: 10.13394/j.cnki.jgszz.2018.2.0009
    [17]MENG Xinxin, LIN Youxi, REN Zhiying. Surface quality of grinding optical glasses using eletroplated diamond wheel[J]. Diamond & Abrasives Engineering, 2017, 37(3): 91-95. doi: 10.13394/j.cnki.jgszz.2017.3.0018
    [18]ZHANG Bei. Research on precision grinding of ferrite with graphite grinding wheel[J]. Diamond & Abrasives Engineering, 2016, 36(1): 34-37,49. doi: 10.13394/j.cnki.jgszz.2016.1.0008
    [19]LIU Jie, CAO Jianfeng, SUN Zhengbin, LIU Meng. Experimental study on process of grinding Al2O3 ceramic with resin bond diamond grinding wheel[J]. Diamond & Abrasives Engineering, 2016, 36(4): 79-83. doi: 10.13394/j.cnki.jgszz.2016.4.0016
    [20]DING Yulong, ZHU Jianhui, XIONG Huajun, FENG Keming, DING Chunsheng, LI Shaojie. Grinding performance of Ni-coated diamond grinding wheel on cemented carbides[J]. Diamond & Abrasives Engineering, 2016, 36(1): 70-73. doi: 10.13394/j.cnki.jgszz.2016.1.0015
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-05020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 32.9 %FULLTEXT: 32.9 %META: 63.5 %META: 63.5 %PDF: 3.6 %PDF: 3.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.1 %其他: 16.1 %其他: 1.2 %其他: 1.2 %Jaipur: 0.1 %Jaipur: 0.1 %Thane: 0.1 %Thane: 0.1 %上海: 1.1 %上海: 1.1 %东京: 0.2 %东京: 0.2 %丽水: 0.3 %丽水: 0.3 %乌普萨拉: 0.3 %乌普萨拉: 0.3 %佛山: 0.3 %佛山: 0.3 %保定: 0.1 %保定: 0.1 %六安: 0.1 %六安: 0.1 %北京: 0.8 %北京: 0.8 %十堰: 0.2 %十堰: 0.2 %南京: 0.2 %南京: 0.2 %厦门: 0.2 %厦门: 0.2 %台州: 0.2 %台州: 0.2 %合肥: 0.1 %合肥: 0.1 %吉隆坡: 0.1 %吉隆坡: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %天津: 0.4 %天津: 0.4 %安康: 0.1 %安康: 0.1 %宜昌: 0.2 %宜昌: 0.2 %岘港: 0.2 %岘港: 0.2 %常德: 0.1 %常德: 0.1 %广州: 1.0 %广州: 1.0 %张家口: 3.5 %张家口: 3.5 %惠州: 0.2 %惠州: 0.2 %成都: 0.1 %成都: 0.1 %扬州: 0.1 %扬州: 0.1 %新乡: 1.0 %新乡: 1.0 %新加坡: 0.1 %新加坡: 0.1 %昆明: 0.6 %昆明: 0.6 %杭州: 0.4 %杭州: 0.4 %格兰特县: 0.4 %格兰特县: 0.4 %桂林: 0.1 %桂林: 0.1 %梧州: 0.2 %梧州: 0.2 %武汉: 0.5 %武汉: 0.5 %沈阳: 0.5 %沈阳: 0.5 %泉州: 0.2 %泉州: 0.2 %济南: 0.1 %济南: 0.1 %温州: 0.1 %温州: 0.1 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.2 %湘潭: 0.2 %湘西: 12.7 %湘西: 12.7 %漯河: 0.4 %漯河: 0.4 %焦作: 0.1 %焦作: 0.1 %珠海: 0.1 %珠海: 0.1 %盐城: 0.2 %盐城: 0.2 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %艾哈迈达巴德: 0.1 %艾哈迈达巴德: 0.1 %芒廷维尤: 22.0 %芒廷维尤: 22.0 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 1.7 %苏州: 1.7 %莫斯科: 0.6 %莫斯科: 0.6 %西宁: 19.9 %西宁: 19.9 %西安: 0.6 %西安: 0.6 %诺沃克: 0.2 %诺沃克: 0.2 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.3 %运城: 0.3 %遵义: 0.1 %遵义: 0.1 %郑州: 3.5 %郑州: 3.5 %重庆: 0.1 %重庆: 0.1 %金华: 0.1 %金华: 0.1 %钦奈: 0.3 %钦奈: 0.3 %银川: 0.1 %银川: 0.1 %长沙: 4.1 %长沙: 4.1 %阿什本: 0.1 %阿什本: 0.1 %青岛: 0.1 %青岛: 0.1 %其他其他JaipurThane上海东京丽水乌普萨拉佛山保定六安北京十堰南京厦门台州合肥吉隆坡哥伦布嘉兴天津安康宜昌岘港常德广州张家口惠州成都扬州新乡新加坡昆明杭州格兰特县桂林梧州武汉沈阳泉州济南温州湖州湘潭湘西漯河焦作珠海盐城石家庄福州秦皇岛艾哈迈达巴德芒廷维尤芝加哥苏州莫斯科西宁西安诺沃克贵阳运城遵义郑州重庆金华钦奈银川长沙阿什本青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (689) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return