CN 41-1243/TG ISSN 1006-852X
PANG Aihong, DONG Xinran, DONG Junyan, SHEN Fangren, TAN Suling, JIA Chenchao, DONG Shushan, MAO Qingqing, WU Zengfeng. Nano silylation modification of diamond powder surface and its oxidation resistance[J]. Diamond & Abrasives Engineering, 2022, 42(4): 410-420. doi: 10.13394/j.cnki.jgszz.2022.0100
Citation: PANG Aihong, DONG Xinran, DONG Junyan, SHEN Fangren, TAN Suling, JIA Chenchao, DONG Shushan, MAO Qingqing, WU Zengfeng. Nano silylation modification of diamond powder surface and its oxidation resistance[J]. Diamond & Abrasives Engineering, 2022, 42(4): 410-420. doi: 10.13394/j.cnki.jgszz.2022.0100

Nano silylation modification of diamond powder surface and its oxidation resistance

doi: 10.13394/j.cnki.jgszz.2022.0100
More Information
  • Received Date: 2022-06-28
  • Rev Recd Date: 2022-07-22
  • Using sol-gel technology and hydrolysis condensation reaction of tetraethyl orthosilicate (TEOS), a nano silica amorphous gel film with a thickness of 2~10 nm and rich in active oxygen groups is coated on the surface of diamond powder. When the gel film is heated to a certain temperature, the silicon dioxide in it can change from amorphous phase to crystalline phase. The initial oxidation temperature of diamond powder in air increases from 500 ℃ of raw diamond to 550 ℃ after TEOS coating modification. After adding nano silicon powder to TEOS coating, the initial oxidation temperature of diamond powder sample in air can be further increased to 610 ℃. After 800 ℃ heat treatment, the residual amount of the sample is significantly higher than that of the raw diamond, which indicates that the high temperature oxidation resistance of diamond powder can be further improved by adding nano silicon powder to TEOS coating. The rich reactive oxygen groups in TEOS coating can produce chemical reaction with resin/ceramic bond, which is conducive to improving the holding force of bond on diamond, and can provide good functional modified raw materials for preparing high-performance resin/ceramic bond diamond tools.

     

  • [1]
    LI Q Q, PENG Z B, CHEN Q W. The study of the vitrified diamond wheel [J]. Mining and Metallurgical Engineering,2007,27(1):75-77.
    [2]
    WANG S, LIU X, GENG B, et al. Development of metal bonded diamond abrasive tools [J]. Diamond & Abrasives Engineering,2006,4:71-75.
    [3]
    WANG Z, WAN L, WEIDA H U, et al. Effect of nickel on the properties of vitrified bond for diamond grinding tool [J]. Materials Review,2012,19(3):203-206.
    [4]
    刘恒源, 徐三魁, 韩志静, 等. 金属/金刚石复合磨料在树脂磨具中的应用 [J]. 金刚石与磨料磨具工程,2021,41(2):59-63.

    LIU Hengyuan, XU Sankui, HAN Zhijing, et al. Application of metal/diamond composite abrasive in resin abrasive tools [J]. Diamond & Abrasives Engineering,2021,41(2):59-63.
    [5]
    陈哲, 陈春晖, 刘一波, 等. 树脂结合剂金刚石堆积磨料砂轮磨削YG8硬质合金 [J]. 金刚石与磨料磨具工程,2020,40(6):25-30.

    CHEN Zhe, CHEN Chunhui, LIU Yibo, et al. Grinding YG8 cemented carbide with resin bond grinding wheels made of diamond agglomerate abrasive [J]. Diamond & Abrasives Engineering,2020,40(6):25-30.
    [6]
    荆运洁, 王秦生. 金刚石热稳定性与颗粒形状的关系探讨 [J]. 金刚石与磨料磨具工程,1996(2):2-4. doi: 10.13394/j.cnki.jgszz.1996.02.001

    JING Yunjie, WANG Qinsheng. Relationship discussion between thermal stability and particle shape of diamond [J]. Diamond & Abrasives Engineering,1996(2):2-4. doi: 10.13394/j.cnki.jgszz.1996.02.001
    [7]
    霍喜平, 何远航, 宋媛媛. 人造金刚石热稳定性的实验研究 [J]. 中国矿业,2002,11(4):62-63. doi: 10.3969/j.issn.1004-4051.2002.04.020

    HUO Xiping, HE Yuanhang, SONG Yuanyuan. Experimental research of thermal stability of artificial diamond [J]. China Mining Magazine,2002,11(4):62-63. doi: 10.3969/j.issn.1004-4051.2002.04.020
    [8]
    WANG B F, WANG S Y, TANG Z. Mechanism of the effect of adhesive Co on the thermal stability of polycrystalline diamond compact [J]. Mining and Metallurgical Engineering,2009,29(5):90-93.
    [9]
    窦志强, 肖长江, 栗正新. 金刚石微粉表面镀覆技术研究进展 [J]. 电镀与精饰,2017,39(10):23-27. doi: 10.3969/j.issn.1001-3849.2017.10.005

    DOU Zhiqiang, XIAO Changjiang, LI Zhengxin. Research progress of plating technology on ultrafine diamond surface [J]. Plating and Finishing,2017,39(10):23-27. doi: 10.3969/j.issn.1001-3849.2017.10.005
    [10]
    XIANG D, LI M S, XU B. Research progress of techniques of coated diamond [J]. Superhard Material Engineering,2006,18(3):44-49.
    [11]
    曾汉民, 安小宁. 一种纳米金刚石粒子表面处理方法: CN02115230.6 [P]. 2001-11-20.

    ZENG Hanmin, AN Xiaoning. A kind of method for surface treatment of nano diamond: CN021152330.6 [P]. 2001-11-20.
    [12]
    JOHN N A, BROWN J R. Flexural and interlaminar shear properties of glass-reinforced phenolic composites [J]. Composites Part A: Applied Science & Manufacturing,1998,29(8):939-946.
    [13]
    YAN P, WANG Y, WANG M, et al. Preparation and characterization of fibrous sepiolite modified silane coupling agent/fluororubber nanocomposite [J]. Polymer Composites,2015,38(s1):E208-E213.
    [14]
    CABRAL A M, TRABELSI W, SERRA R, et al. The corrosion resistance of hot dip galvanised steel and AA2024-T3 pre-treated with bis-[triethoxysilylpropyl] tetrasulfide solutions doped with Ce(NO3)3 [J]. Corrosion Science,2006,48(11):3740-3758. doi: 10.1016/j.corsci.2006.01.010
    [15]
    WAN L, SHI D, WANG J S, et al. Research on the surface modification of diamond with silane coupling agent [J]. Journal of Hunan University (Natural Science),2013,40(4):71-74.
    [16]
    YAN N, ZHAO D P, WANG L, et al. Preparation and sintering of silica-coated ultrafine diamonds–vitrified bond composite powders [J]. International Journal of Refractory Metals and Hard Materials,2014,43:212-215. doi: 10.1016/j.ijrmhm.2013.12.001
    [17]
    ZHAO D, WANG Z, XI Y, et al. Preparation of silica-coated ultrafine diamond and dispersion in ceramic matrix [J]. Materials Letters,2013,113:134-137. doi: 10.1016/j.matlet.2013.09.052
    [18]
    林铭西. 人造金刚石生产工艺与理论 [M]. 桂林: 广西师范大学出版社, 1996.

    LIN Minxi. Production technology and theory of synthetic diamond [M]. Guilin: Guangxi Normal University Press, 1996.
    [19]
    方啸虎. 人造金刚石立方氮化硼基础与标准 [M]. 北京: 化学工业出版社, 1993.

    FANG Xiaohu. Fundamentals and standards of synthetic diamond and cubic boron nitride [M]. Beijing: Chemistry Industry Press, 1993.
    [20]
    樊建民, 王汝菊, 商玉生. 动高压法合成金刚石微粉的抗氧化性能的研究 [J]. 物理,1983(1):29-30.

    FAN Jianmin, WANG Ruju, SHANG Yusheng. Study on oxidation resistance of diamond powder synthesized by dynamic high pressure method [J]. Physics,1983(1):29-30.
    [21]
    陈静, 万隆, 时丹, 等. 表面活性剂对金刚石在树脂中悬浮性及与树脂结合性的影响 [J]. 复合材料学报,2014,31(6):1416-1421.

    CHEN Jing, WAN Long, SHI Dan, et al. Effects of surfactant on suspension property of diamond in resin and associativity between diamond and resin [J]. Acta Materiae Compositae Sinica,2014,31(6):1416-1421.
    [22]
    KOZERSKI G E, GALLAVAN R H, ZIEMELIS M J. Investigation of trialkoxysilane hydrolysis kinetics using liquid chromatography with inductively coupled plasma atomic emission spectrometric detection and non-linear regression modeling [J]. Analytica Chimica Acta,2003,489(1):103-114. doi: 10.1016/S0003-2670(03)00710-4
    [23]
    OKUMOTO S, FUJITA N, YAMABE S. Theoretical study of hydrolysis and condensation of silicon alkoxides [J]. Journal of Physical Chemistry A,1998,102(22):225-235.
    [24]
    DE G, KARMAKAR B, GANGULI D. Hydrolysis-condensation reactions of TEOS in the presence of acetic acid leading to the generation of glass-like silica microspheres in solution at room temperature [J]. Journal of Materials Chemistry,2000,10(10):2289-2293. doi: 10.1039/b003221m
    [25]
    JIAN L. The effect of catalysts on TEOS hydrolysis-condensation [J]. Journal of Inorganic Materials,1997,12(3):363-369.
    [26]
    YANG H, DING Z S, WANG Z H, et al. Kinetics of sol-gel process for tetraethyl orthosilicate [J]. Journal of the Chinese Ceramia Society,1989,17(3):204-209.
    [27]
    SUPROMPITUK W, RADPAKDEE T, PHOLDEE N, et al. Effects of TEOS precursor and reaction time on the synthesis of silica coated single-walled carbon nanotubes [J]. Materials Science Forum,2016,872:248-252. doi: 10.4028/www.scientific.net/MSF.872.248
  • Relative Articles

    [1]WANG Yifan, TANG Wenzhi, HE Yan, GAO Xingjun, FAN Lin, SONG Shuyuan. Investigation on mechanism of nano-machining of single-crystal silicon carbide on non-continuous surface with diamond abrasive[J]. Diamond & Abrasives Engineering, 2024, 44(1): 92-100. doi: 10.13394/j.cnki.jgszz.2023.0057
    [2]ZOU Yuyao, TIAN Xiaoqing, GAO Chuanping, HAN Guozhi. Research on chemical modification of nickel coating on diamond particles surface[J]. Diamond & Abrasives Engineering, 2024, 44(3): 304-308. doi: 10.13394/j.cnki.jgszz.2024.0007
    [3]PAN Qiuli, ZHANG Rongliang. Depositing diamond film on high Co content cemented carbide using CrSiN film as an interlayer[J]. Diamond & Abrasives Engineering, 2023, 43(6): 698-703. doi: 10.13394/j.cnki.jgszz.2023.0004
    [4]LI Mingfeng, FANG Xiaohong, DUAN Longchen, TAN Songcheng. Effect of iron-base amorphous powder on diamond tool matrix[J]. Diamond & Abrasives Engineering, 2022, 42(2): 180-185. doi: 10.13394/j.cnki.jgszz.2021.0115
    [5]HUANG Yihao, MA Zhibin. Effect of tungsten surface laser treatment on adhesion of diamond film[J]. Diamond & Abrasives Engineering, 2021, 41(1): 17-20. doi: 10.13394/j.cnki.jgszz.2021.1.0003
    [6]ZHANG Jiayou, SONG Wanwan, BAI Yuzhen, HAN Bing, LI Lujie, ZHU Huining. Surface roughness prediction based on stepwise regression analysis[J]. Diamond & Abrasives Engineering, 2021, 41(6): 63-67. doi: 10.13394/j.cnki.jgszz.2021.6.0011
    [7]DENG Fuming, WANG Shuang, GUO Zhenhai, HAO Cen, ZHAO Xin, XIE Yajuan, XU Chenyang. Effect of matrix surface temperature field on deposition of nano-diamond films based on ANSYS simulation[J]. Diamond & Abrasives Engineering, 2020, 40(3): 33-39. doi: 10.13394/j.cnki.jgszz.2020.3.0005
    [8]ZHANG Kun, TIAN Yangyang, LIU Kun, ZHANG Jianhua, WANG Tao. Synthesis of gem grade diamond by temperature gradient method using high temperature sintered alumina ceramics[J]. Diamond & Abrasives Engineering, 2020, 40(6): 9-12. doi: 10.13394/j.cnki.jgszz.2020.6.0002
    [9]PANG Jiwei, GAO Yufei, LI Sheng. Surface characteristics and wire wear of electroplated diamond wire saw slicing photovoltaic polycrystalline silicon[J]. Diamond & Abrasives Engineering, 2019, 39(5): 92-96. doi: 10.13394/j.cnki.jgszz.2019.5.0016
    [10]SHI Guangfeng, FU Wang, WANG Shukun, HAN Dongdong, ZHANG Hua, LIU Siyu. Sawed surface analysis of natural diamond[J]. Diamond & Abrasives Engineering, 2019, 39(2): 13-16. doi: 10.13394/j.cnki.jgszz.2019.2.0003
    [11]DING Kangjun, MA Zhibin, SONG Xiuxi, XIA Yuhao, GENG Chuanwen. Effect of temperature on defects in homoepitaxial single crystal diamond by MPCVD[J]. Diamond & Abrasives Engineering, 2018, 38(2): 8-11,19. doi: 10.13394/j.cnki.jgszz.2018.2.0002
    [12]WANG Haikuo, ZHANG Xiangfa, WEI Xing, WANG Yongkai, REN Ying, ZHAO Haijun, LU Canhua, LIU Qiankun. Synthesizing bulk polycrystalline diamond by method of direct phase transition[J]. Diamond & Abrasives Engineering, 2018, 38(1): 1-6. doi: 10.13394/j.cnki.jgszz.2018.1.0001
    [13]SHAO Jingru, LI Fangyi, LIU Yongqi, LIU Zimu, ZHAI Xiangyang, ZHU Yibo, ZHANG Songfei, DONG Pei. Influence factors of electrolytic processing diamond blocks synthesizedby high temperature and high pressure catalyst method[J]. Diamond & Abrasives Engineering, 2018, 38(2): 12-14. doi: 10.13394/j.cnki.jgszz.2018.2.0003
    [14]HAN Ping, GUO Yueping, WANG Shufang, LI Zhengxin. A survey of surface modification of synthetic diamond[J]. Diamond & Abrasives Engineering, 2018, 38(3): 6-10. doi: 10.13394/j.cnki.jgszz.2018.3.0002
    [15]ZHAO Yucheng, LI Yapeng, YAN Ning, WANG Mingzhi, ZOU Qin, MIAO Weipeng. Preparing and characterizing ultrafine diamond coated with titanium dioxide[J]. Diamond & Abrasives Engineering, 2018, 38(6): 7-12. doi: 10.13394/j.cnki.jgszz.2018.6.0002
    [16]ZHANG Kuilin, CHEN Jun, HUANG Zhuo, JIAN Xiaogang. Influence of line defect in cemented carbide substrate on bonding strength between diamond coating film and substrate[J]. Diamond & Abrasives Engineering, 2017, 37(3): 23-28. doi: 10.13394/j.cnki.jgszz.2017.3.0006
    [17]CHEN Bing, HU Honglu, ZHONG Yixing, LI Shichun, DENG Chaohui, ZHAO Qingliang. Analysis and experimental research of grinding wheel errors in cross grinding aspheric surfaces[J]. Diamond & Abrasives Engineering, 2017, 37(5): 24-29,40. doi: 10.13394/j.cnki.jgszz.2017.5.0004
    [18]BAI Linshan, WANG Jinpu, CHU Xiangfeng. Mechanism and optimization of chemical-mechanically polishing ceramic glass substrate with CeO_2 slurry[J]. Diamond & Abrasives Engineering, 2017, 37(2): 1-5,10. doi: 10.13394/j.cnki.jgszz.2017.2.0001
    [19]ZHANG Yan, ZANG Jianbing, TIAN Pengfei, XU Hanqing, HAN Chan, WANG Yanhui. Microwave method coated nanodiamond and its application progress in catalytic area[J]. Diamond & Abrasives Engineering, 2016, 36(5): 8-14. doi: 10.13394/j.cnki.jgszz.2016.5.0002
    [20]CHEN Yi, WANG Jianhua, LIU Fan, WENG Jun, WU Xiao. Effect of carbon dioxide on growth of diamond films[J]. Diamond & Abrasives Engineering, 2016, 36(4): 39-43. doi: 10.13394/j.cnki.jgszz.2016.4.0008
  • Cited by

    Periodical cited type(3)

    1. 朱新雨,郭宇,庞诚宇,董俊言,付玉博,姜丽娜,董书山. 金刚石/纳米氧化铝陶瓷复合材料高温高压合成物相结构分析. 超硬材料工程. 2024(03): 1-8 .
    2. 庞爱红,郭宇,庞诚宇,付玉博,董俊言,谭素玲,吴增凤,董书山. 金刚石-碳纤维复合材料的高温高压合成及组织结构分析. 超硬材料工程. 2023(03): 1-7 .
    3. 杜全斌,张志康,崔冰,张黎燕,王蕾,李伟,张建华,王英华. 金刚石表面改性技术研究进展与应用. 金属加工(热加工). 2023(12): 1-10 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-05020406080100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.8 %FULLTEXT: 23.8 %META: 69.7 %META: 69.7 %PDF: 6.5 %PDF: 6.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.6 %其他: 11.6 %其他: 0.8 %其他: 0.8 %Jaipur: 0.1 %Jaipur: 0.1 %Kao-sung: 0.1 %Kao-sung: 0.1 %Koesan: 0.3 %Koesan: 0.3 %Thane: 0.1 %Thane: 0.1 %三门峡: 0.3 %三门峡: 0.3 %上海: 1.3 %上海: 1.3 %东洛杉矶: 0.2 %东洛杉矶: 0.2 %东莞: 1.0 %东莞: 1.0 %丹佛: 0.1 %丹佛: 0.1 %信阳: 0.8 %信阳: 0.8 %北京: 7.2 %北京: 7.2 %十堰: 0.2 %十堰: 0.2 %华盛顿州: 0.2 %华盛顿州: 0.2 %南京: 0.3 %南京: 0.3 %南阳: 0.1 %南阳: 0.1 %厦门: 0.5 %厦门: 0.5 %台州: 0.4 %台州: 0.4 %合肥: 0.2 %合肥: 0.2 %周口: 0.1 %周口: 0.1 %呼和浩特: 0.5 %呼和浩特: 0.5 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %喀什: 0.2 %喀什: 0.2 %嘉兴: 0.1 %嘉兴: 0.1 %天津: 1.2 %天津: 1.2 %太原: 0.3 %太原: 0.3 %安康: 0.1 %安康: 0.1 %宣城: 0.3 %宣城: 0.3 %密蘇里城: 0.1 %密蘇里城: 0.1 %广州: 0.2 %广州: 0.2 %开封: 0.2 %开封: 0.2 %张家口: 2.7 %张家口: 2.7 %成都: 0.3 %成都: 0.3 %扬州: 0.4 %扬州: 0.4 %新加坡: 0.1 %新加坡: 0.1 %无锡: 0.4 %无锡: 0.4 %昆明: 1.3 %昆明: 1.3 %晋中: 0.1 %晋中: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 0.6 %杭州: 0.6 %格兰特县: 0.1 %格兰特县: 0.1 %武汉: 0.8 %武汉: 0.8 %沈阳: 0.3 %沈阳: 0.3 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.6 %济南: 0.6 %济宁: 0.1 %济宁: 0.1 %淄博: 0.1 %淄博: 0.1 %深圳: 0.8 %深圳: 0.8 %温州: 0.3 %温州: 0.3 %湖州: 0.2 %湖州: 0.2 %湘潭: 0.1 %湘潭: 0.1 %湘西: 7.6 %湘西: 7.6 %滨州: 0.1 %滨州: 0.1 %漯河: 1.0 %漯河: 1.0 %濮阳: 0.1 %濮阳: 0.1 %烟台: 0.1 %烟台: 0.1 %焦作: 0.3 %焦作: 0.3 %盐城: 0.2 %盐城: 0.2 %石家庄: 0.3 %石家庄: 0.3 %秦皇岛: 0.1 %秦皇岛: 0.1 %绍兴: 0.2 %绍兴: 0.2 %芒廷维尤: 15.3 %芒廷维尤: 15.3 %芝加哥: 1.2 %芝加哥: 1.2 %苏州: 0.4 %苏州: 0.4 %莫斯科: 0.3 %莫斯科: 0.3 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 19.9 %西宁: 19.9 %西安: 0.4 %西安: 0.4 %西雅图: 0.1 %西雅图: 0.1 %诺沃克: 1.8 %诺沃克: 1.8 %贵阳: 0.4 %贵阳: 0.4 %费利蒙: 0.1 %费利蒙: 0.1 %运城: 0.6 %运城: 0.6 %邯郸: 0.1 %邯郸: 0.1 %郑州: 4.9 %郑州: 4.9 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.1 %重庆: 0.1 %铜陵: 0.2 %铜陵: 0.2 %镇江: 0.1 %镇江: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 3.9 %长沙: 3.9 %长治: 0.1 %长治: 0.1 %阿什本: 0.3 %阿什本: 0.3 %青岛: 0.9 %青岛: 0.9 %鞍山: 0.1 %鞍山: 0.1 %首尔: 0.1 %首尔: 0.1 %香港岛: 0.1 %香港岛: 0.1 %其他其他JaipurKao-sungKoesanThane三门峡上海东洛杉矶东莞丹佛信阳北京十堰华盛顿州南京南阳厦门台州合肥周口呼和浩特哈尔滨哥伦布喀什嘉兴天津太原安康宣城密蘇里城广州开封张家口成都扬州新加坡无锡昆明晋中朝阳杭州格兰特县武汉沈阳洛阳济南济宁淄博深圳温州湖州湘潭湘西滨州漯河濮阳烟台焦作盐城石家庄秦皇岛绍兴芒廷维尤芝加哥苏州莫斯科衡阳衢州西宁西安西雅图诺沃克贵阳费利蒙运城邯郸郑州鄂州重庆铜陵镇江长春长沙长治阿什本青岛鞍山首尔香港岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (1100) PDF downloads(102) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return