CN 41-1243/TG ISSN 1006-852X
Volume 42 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
DONG Guojun, WANG Lei, GAO Shengdong. Grinding force model for rotary ultrasonic grinding of TiBw mesh reinforced titanium matrix composites[J]. Diamond & Abrasives Engineering, 2022, 42(1): 97-103. doi: 10.13394/j.cnki.jgszz.2021.0092
Citation: DONG Guojun, WANG Lei, GAO Shengdong. Grinding force model for rotary ultrasonic grinding of TiBw mesh reinforced titanium matrix composites[J]. Diamond & Abrasives Engineering, 2022, 42(1): 97-103. doi: 10.13394/j.cnki.jgszz.2021.0092

Grinding force model for rotary ultrasonic grinding of TiBw mesh reinforced titanium matrix composites

doi: 10.13394/j.cnki.jgszz.2021.0092
More Information
  • Received Date: 2021-06-01
  • Accepted Date: 2021-11-26
  • Rev Recd Date: 2021-09-27
  • To solve the problems of poor surface quality and unevenness during the processing of TiBw mesh reinforced titanium matrix composites, the normal grinding forces of rotary ultrasonic grinding were studied. The motion law of abrasive particles in rotary ultrasonic grinding was analyzed, the normal grinding force model of rotary ultrasonic grinding TiBw mesh reinforced titanium matrix composites was established, and the model was verified by single factor grinding experiment. The results show that under certain spindle speed, feed speed, grinding depth, fixed grinding width, ultrasonic amplitude and ultrasonic vibration frequency, the normal grinding forces decrease with the increase of spindle speeds and increase with the increase of feed speeds and grinding depths, and the absolute values of relative error between the grinding experimental values and the model calculated values are within 6%. The model well predicts the normal grinding force during grinding of TiBw mesh reinforced titanium matrix composites, which verifies the effectiveness of the prediction model.

     

  • loading
  • [1]
    刘世锋, 宋玺, 薛彤, 等. 钛合金及钛基复合材料在航空航天的应用和发展 [J]. 航空材料学报,2020,40(3):77-94.

    LIU Shifeng, SONG Xi, XUE Tong, et al. Application and development of titanium alloy and titanium matrix composites in aerospace field [J]. Journal of Aeronautial Materials,2020,40(3):77-94.
    [2]
    BLAU P, JOLLY B. Relationships between abrasive wear, hardness, and grinding characteristics of titanium-based metal-matrix composites [J]. Journal of Materials Engineering and Performance,2009,18:424-432. doi: 10.1007/s11665-008-9227-3
    [3]
    ZHAO B, DING W, DAI J, et al. A comparison between conventional speed grinding and super-high speed grinding of (TiCp+TiBw)/Ti-6Al-4V composites using vitrified CBN wheel [J]. The International Journal of Advanced Manufacturing Technology,2014,72(1/2/3/4):69-75. doi: 10.1007/s00170-014-5656-3
    [4]
    BEJJANI R, SHI B, ATTIA H, et al. Laser assisted turning of titanium metal matrix composite [J]. CIRP Annals,2011,60(1):61-64. doi: 10.1016/j.cirp.2011.03.086
    [5]
    LI Z, DING W, LIU C, et al. Grinding performance and surface integrity of particulate-reinforced titanium matrix composites in creep-feed grinding [J]. The International Journal of Advanced Manufacturing Technology,2018,94(9):3917-3928.
    [6]
    胡智特, 秦娜, 刘凡. 超声振动车削TC4钛合金的切削性能研究 [J]. 机械设计与制造,2018(2):164-166.

    HU Zhite, QIN Na, LIU Fan. Study on cutting performance of TC4 titanium alloy by ultrasonic vibration turning [J]. Machinery Design & Manufacture,2018(2):164-166.
    [7]
    马超, 张建华, 陶国灿. 超声振动辅助铣削加工钛合金表面摩擦磨损性能研究 [J]. 表面技术,2017,46(8):115-119.

    MA Chao, ZHANG Jianhua, TAO Guocan. Wear and friction properties of titanium alloy surface subject to ultrasonic vibration assisted milling [J]. Surface Technology,2017,46(8):115-119.
    [8]
    张习芳, 郑侃, 廖文和, 等. 超声振动辅助铣削钛合金的表面完整性研究 [J]. 工具技术,2017,51(9):12-16.

    ZHANG Xifang, ZHENG Kan, LIAO Wenhe, et al. Investigation on surface integrity for ultrasonic vibration assisted milling titanium alloy [J]. Tool Engineering,2017,51(9):12-16.
    [9]
    杨宇辉, 陈海彬, 马文举, 等. 氧化锆陶瓷旋转超声加工脆塑转变特性研究 [J]. 表面技术,2020,49(4):90-97.

    YANG Yuhui, CHEN Haibin, MA Wenju, et al. Study of the characteristics of brittle-ductile transition in rotary ultrasonic machining of zirconia ceramics [J]. Surface Technology,2020,49(4):90-97.
    [10]
    TESFAY H, XU Z, LI Z. Ultrasonic vibration assisted grinding of bio-ceramic materials: An experimental study on edge chippings with Hertzian indentation tests [J]. The International Journal of Advanced Manufacturing Technology,2016,86(9):3483-3494.
    [11]
    SINGH R, SINGHAL S. Rotary ultrasonic machining of macor ceramic: An experimental investigation and microstructure analysis [J]. Materials and Manufacturing Processes,2016,32(9):927-939.
    [12]
    WANG H, PEI Z, CONG W. A mechanistic cutting force model based on ductile and brittle fracture material removal modes for edge surface grinding of CFRP composites using rotary ultrasonic machining [J]. International Journal of Mechanical Sciences,2020,176:105551. doi: 10.1016/j.ijmecsci.2020.105551
    [13]
    ZHOU M, ZHENG W. A model for grinding forces prediction in ultrasonic vibration assisted grinding of SiCp/Al composites [J]. The International Journal of Advanced Manufacturing Technology,2016,87(9/10/11/12):3211-3224. doi: 10.1007/s00170-016-8726-x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (332) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return