Research status of thermal damage inhibition technology for diamond
-
摘要: 金刚石工具制备过程中的金刚石热损伤主要包括金刚石的石墨化、金刚石的破损开裂和金刚石的化学侵蚀等。针对金刚石热损伤问题,分别从金刚石表面镀覆、胎体材料性能调控和成型技术优化3个方面,介绍了目前金刚石热损伤的抑制技术,并对未来研究方向进行了展望,以期为高性能金刚石工具制备提供参考和指导。Abstract: Significance: As the hardest material, diamond is widely used in various cutting and grinding tools. During the preparation process of diamond tools, thermal damage to diamonds is almost inevitable. The thermal damage to diamonds primarily includes graphitization, breakage, cracking, and chemical erosion. Graphitization of diamonds is a lattice transformation process of C atoms essentially, which requires sufficient energy to overcome the energy barrier. Consequently, during the preparation process of diamond tools, diamonds undergo varying degrees of graphitization due to high temperatures and catalyst elements. Breakage and cracking of diamonds primarily orginate from thermal mismatch between the diamond and the matrix metal, including its carbides, where carbides act as inducers of local residual stress, facilitating crack propagation. Chemical erosion of diamonds mainly refers to the process in which C atoms on the surface of diamonds react with active elements through diffusion during the sintering process, therefore deteriorating the diamonds. However, due to the poor wettability of diamonds, it often necessitates the addition of active elements such as Ti, Cr, V, etc., to react with diamonds and improve the holding force. Current suppression technologies for diamond thermal damage can be roughly divided into surface coating of diamonds, adjustment of matrix material properties, and optimization of forming technology. Progress: Diamond surface coating utilizes the unbonded atoms present on the diamond surface, which can react with certain elements at sufficiently high temperatures to form carbides, thereby enhancing the wettability between the matrix metal and the diamonds. Depending on the type of coating, it can generally be classified into metal and non-metal coatings. Metal coatings not only fill and repair defects in diamonds but also improve the bonding strength between the metal and diamonds. Common coating metals include Ni, Ti, W, Cr, and alloys are also selected as coating materials. For non-metal coatings, elements such as B and Si are typically chosen, as they can form carbide layers on the diamond surface, protect the diamond structure, reduce diamond oxidation, and prevent diamonds from being eroded and damaged by strong carbon elements in the matrix material. The choice of matrix material plays a crucial role in mitigating thermal damage to diamonds. Low-melting-point matrix materials can effectively reduce sintering temperature and inhibit the graphitization of diamonds consequently. Furthermore, incorporating appropriate active elements into the matrix material can enhance the interfacial strength between diamond and the matrix, thereby improving the performance of diamond tools. Currently, the modulation of matrix material properties is primarily focused on alloy optimization and composite material development. Alloy optimization aims to reduce diamond thermal damage by refining the alloy composition of the matrix material. Researchers have experimented with elements such as Si, Hf, and Zr, discovering that these elements can mitigate the erosion of diamonds by active elements and reduce diamond thermal damage. Additionally, amorphous Ni-based alloys, due to their low melting point and narrow melting range, have been used as brazing materials to enhance the performance of diamond tools. Composite material development seeks to improve mechanical properties while utilizing suitable reinforcing phases to absorb catalytic elements within the matrix, thereby reducing diamond graphitization. Additionally, reinforcing phases could optimize the diamond interface condition, leading to both increased interfacial strength and reduced diamond thermal damage. Molding technology significantly impacts the lifespan and performance of diamond tools, particularly through parameters such as molding temperature, soaking time, molding pressure, and atmosphere. Molding temperature and soaking time determine grain growth in the matrix, diamond thermal damage, and the interfacial growth between diamond and the matrix. Molding pressure affects the density of the matrix material, which in turn influences its mechanical properties. The atmosphere, typically vacuum or protective, must be carefully controlled, as even trace amounts of moisture or oxygen could lead to diamond oxidation, degrading tool performance and lifespan. Diamond tools are typically manufactured through methods such as hot-press sintering and brazing, while additive manufacturing is emerging as a promising direction in tool fabrication. Conclusions and Prospects: Future research to mitigate diamond thermal damage could focus on three main areas: theoretical analysis of diamond interfaces at the microscale, the establishment of a guidance system matching diamond tool matrix materials with service environments, and investigation of the mechanical behavior of diamonds interfaced during the molding process.
-
Key words:
- diamond /
- diamond tool /
- thermal damage /
- inhibition technology
-
金刚石作为目前已知硬度最高的材料,广泛应用于各种切割磨削类工具[1]。制备金属基金刚石工具主要有电镀、热压和钎焊等方法,其主要目的是将金刚石微粒固定或镶嵌在金属胎体材料上。电镀法是利用金属的电沉积过程,将金刚石微粒固定或镶嵌在金属镀层中,具有厚度均匀、电镀温度低、工艺简单等优点,但由于金属镀层对金刚石的把持力较弱,金刚石微粒在使用过程中易脱落,从而造成金刚石工具失效[2]。热压法和钎焊法制备金刚石工具通常采用高温环境,在胎体材料中触媒元素和活性元素的共同作用下,金刚石与胎体的结合力较强,但往往造成金刚石发生热损伤等,劣化金刚石工具的性能。
1. 金刚石热损伤
金刚石热损伤是金刚石工具制备的一个重要问题,一般是指在金刚石工具制备过程中,金刚石受到烧结环境以及胎体材料中某些活性元素的影响,发生石墨化、破损、开裂以及化学侵蚀等现象[2]。金刚石热损伤会造成金刚石工具性能下降,进而影响工具寿命。
金刚石的石墨化是指金刚石在高温下逐渐转变为石墨的过程。由于金刚石表面存在未成键电子,即sp3悬键,表面能较高,C原子容易发生重构,而当没有其他原子存在时,这些不稳定的C原子易互相键合,形成能级较低的石墨。导致金刚石石墨化的因素很多,除高温外,应力、结构缺陷、O2以及活性元素都可以诱导金刚石的石墨化。金刚石在保护气氛下的石墨化温度可达1 500 ℃,在真空中的石墨化温度为1 200 ℃,而在空气和Fe、Mn、Co、Ni等触媒元素的共同作用下,金刚石的石墨化温度可以降到700 ℃左右[3]。吕祎强等[4]借助原位扫描电镜研究了尺寸与Fe元素对金刚石氧化损伤的影响,发现对于纳米金刚石,由于石墨的稳定性高于金刚石,O2优先与金刚石反应,而金刚石的石墨化对其氧化损伤过程没有明显影响;块体金刚石的氧化损伤具有晶面选择性,容易在金刚石表面形成(110)晶面三角锥;当金刚石与Fe接触时,γ-Fe将金刚石催化成石墨,生成的石墨在Fe中渗碳使金刚石表面发生刻蚀损伤。TULIC等[5]发现金刚石表面的C原子可以从Ni-金刚石界面处扩散到Ni表面,进而催化成核生长为石墨,也可以沿着金刚石表面扩散形成石墨。图1显示了金刚石在Ni元素诱导作用下的石墨化过程[5-6]。通常认为,Ni、Fe、Co等活性元素可以将金刚石催化为石墨[7-9],而UEDA等[10]通过激光拉曼光谱测试观察到Cu催化金刚石石墨化的现象,说明能够催化金刚石石墨化的元素及其机理仍有待探索研究。金刚石的石墨化在本质上是C原子的晶格结构转变,这一过程需要吸收能量来克服势垒,而在制备金刚石工具的过程中,胎体材料的熔点范围决定了高温是必要条件,因此金刚石的石墨化几乎不可避免。
金刚石的破损开裂主要是由烧结过程中产生的内应力造成的。胎体金属在烧结过程中存在着熔融-冷却过程,金刚石与胎体金属的热膨胀系数、弹性模量不同,容易使金刚石与胎体金属界面产生较大的残余应力,进而导致金刚石产生裂纹甚至发生破损[11]。BUHL等[12]利用Ag-Cu-Ti钎料钎焊金刚石,通过激光拉曼光谱测量了残余应力,测试发现残余应力与钎焊参数关系不大,并通过动态模拟验证了晶格参数与热膨胀系数的失配是金刚石与TiC层间产生残余应力的主因。热膨胀系数不同导致的金刚石残余应力σrs可以通过下式计算:
$${\sigma _{{\rm{rs}}}} = E \cdot \Delta \alpha \cdot \Delta T$$ 式中:E为杨氏模量,Δα为金刚石与钎料的热膨胀系数差,ΔT为烧结温度与室温的差值。MUKHOPADHYAY等[13]选用Ni-Cr-Fe-B-Si合金进行金刚石钎焊,结合有限元分析发现金刚石-胎体金属界面的残余应力主要表现为拉伸状态(图2);且界面处反应生成的碳化物是局部残余应力的诱因,界面相与镍基体的失配促进了金刚石与界面处的裂纹扩展,如图3所示。为了避免残余应力导致金刚石开裂,应尽可能减小金刚石与胎体材料之间的热膨胀系数和晶格参数差异,以实现低应力状态下的高强度金刚石工具连接。
金刚石的化学侵蚀是指在烧结过程中金刚石表面的C原子通过扩散作用,与胎体金属中的活性元素发生化学反应从而生成碳化物的过程。由于金刚石石墨化的存在,石墨态的C原子更容易作为孔隙原子向胎体金属扩散,从而在金刚石表面生成碳化物,劣化金刚石的完整性。金刚石具有较高稳定性与化学惰性,导致其与胎体金属结合力不强,为了提高彼此间的结合强度,往往需要在胎体材料中加入Ti、Cr、V等活性元素,或直接选择含有这些活性元素的合金为胎体材料。这些活性元素一方面可以较好地润湿金刚石,另一方面能够与金刚石反应生成强度较高的碳化物,从而提高金刚石的黏接强度。WANG等[14]发现镍铬合金中的Ni元素可明显导致金刚石的石墨化,Cr元素可以在金刚石表面形成紧密且有序的Cr3C2层(图4),并且Cr3C2层越厚,对金刚石的完整性和机械性能损害越严重。Ti元素可以与金刚石反应生成TiC,TiC的生成过程是典型的扩散反应过程,由于C元素的原子半径小于Ti元素的,穿过TiC层的C原子多于Ti原子,因此反应主要发生在TiC层与Ti层的界面[15]。徐俊[16]发现由于金刚石(100)面的表面活性高于(111)面的表面活性,Ti在(100)面的沉积速率更高,反应生成的TiC层更厚。
2. 金刚石热损伤抑制方式
为了减少金刚石热损伤,提高金刚石工具的性能与使用寿命,研究人员采取了许多措施。根据研究对象,可以将抑制金刚石热损伤的方式分为3类:金刚石表面镀覆、胎体材料性能调控和成型技术优化。
2.1 金刚石表面镀覆
金刚石表面存在多余的未成键原子,在足够高的温度下,可以与一些具有3d空轨道的过渡金属如Ti、Cr、Mn、V、W、Mo等结合生成碳化物,从而大大提高金属与金刚石的浸润性[17-19]。目前,镀层的种类按照镀覆的原理可分为化学气相沉积法(chemical vapor deposition,CVD)、物理气相沉积法(physical vapor deposition,PVD)、电镀、熔盐法、预钎焊、真空微蒸镀等,常见的金刚石镀层方式及其特点如表1所示[17]。按照镀层种类划分,又可以将镀层分为金属镀层与非金属镀层。
技术特征 镀层成分 结合状态 镀覆温度t / ℃ 金刚石热损伤 CVD Ti、Mo、W、Cr
及对应碳化物冶金结合 >850 有 PVD Ti、Mo、W、
Cr、Ni、B物理结合 < 400 无 电镀 Ni、Ni-W合金、
W-Co合金机械包覆 < 100 无 熔盐法 Ti、Mo、W、Cr
及对应碳化物冶金结合 850~1 100 有 预钎焊 Ni基合金、Cu基
合金、Ag基合金冶金结合 > 850 有 真空微蒸镀 Ti、Mo、W、Cr
及对应碳化物冶金结合 650~750 无 2.1.1 金刚石表面的金属镀覆
金刚石表面的金属镀覆又称为金刚石的表面金属化,综合原料成本与镀覆技术难度,常选择含Ti、Ni、W、Co等元素的金属或合金作为镀覆金属。金刚石表面的金属镀层不仅可以对初始金刚石的缺陷进行填充与修补,还能改善胎体金属与金刚石的结合强度[20]。
(1)镀Ni。相较于Ti、Cr等常用镀层金属,Ni具有硬度较低、延展性好的优势,且不与金刚石反应生成硬度较高的碳化物,因而烧结时镀层不易开裂。同时,Ni的熔点相对较低,烧结过程中其晶粒更容易长大,有利于镀层的应力释放[21]。另外,镀Ni层具有毛刺结构,可以提高金刚石与基体的结合能力[22]。张一翔等[23]利用磁控溅射制备了镀Ni金刚石微粉,通过切割实验发现镀Ni金刚石线锯的金刚石脱落率相较于未镀Ni的从17.4%降至4.9%。栗晓龙等[24]利用滚镀电镀法对金刚石进行镀Ni处理,抗折强度测试结果表明:镀Ni金刚石节块的抗折强度达到了794 MPa,明显高于常规金刚石节块的743 MPa。方莉俐等[25]探究了金刚石粒度对金刚石镀Ni的影响,发现金刚石的镀Ni层可以起到填充孔隙、补平坑洞等作用,从而明显提高金刚石的抗压强度,但其增强效果随着金刚石粒径的增大而快速削弱。
(2)镀Ti。当温度>600 ℃时,Ti与C的吉布斯自由能为负,说明Ti与C可以发生反应[26],反应生成的TiC不仅可以抑制金刚石的进一步热损伤,还可以降低金刚石-胎体材料的界面热阻,提高材料热导率[27]。WEI等[28]采用微波熔盐法对金刚石表面进行了镀Ti处理,发现在经过850 ℃微波熔盐镀覆20 min后,金刚石颗粒上获得了均匀致密的镀层,而常规加热熔盐镀覆120 min后的镀层仍不完全。武玺旺等[29]探究了熔盐法镀Ti对不同温度下金刚石热稳定性的影响,发现900 ℃时的镀层为均匀致密的Ti-TiC-金刚石复合结构,此时最外层的Ti金属层可以与胎体材料进行良好的冶金结合,中层的TiC可以有效避免金刚石的氧化。郭梦华等[30]利用磁控溅射法对金刚石进行了镀Ti处理,发现镀Ti可以降低金刚石与Cu基体的界面热阻,改善其界面结合的润湿性,且金刚石/Cu复合材料的热导率提高了54.7%。SHA等[31]研究了镀Ti对聚晶金刚石(polycrystalline diamond, PCD)抗氧化和抗石墨化性能的影响,发现金刚石表面生成的TiC在提高界面强度的同时,可以阻止钎料中的Co元素对金刚石的侵蚀,从而将PCD的氧化温度与石墨化温度分别提高了约50 ℃和100 ℃。
(3)镀W、镀Cr等。王树义等[32]使用Ni基钎料将镀W金刚石与常规金刚石焊接到基体上,经过分析对比发现,常规金刚石表面与镀W金刚石表面的Cr3C2的形貌不同(图5),其原因为镀W层有效延长了Ni基钎料与金刚石的接触时间,从而改变了C原子在钎料中的扩散方式与速率,降低了金刚石的石墨化程度,使金刚石底部的最大残余应力降低了9.43%。由于W与金刚石反应生成的WC与Cu的润湿角在目前已知的金属碳化物中最小,因此在制备Cu基金刚石复合材料时,常对金刚石进行镀W处理,进而可以提高复合材料的热导率[33]。郭嘉鹏[34]发现当镀覆温度为1 050 ℃、保温时间达到120 min时,金刚石表面的镀W层含有W、WC与W2C,而微量的W2C在保证金刚石界面热阻较小的同时,还可以明显改善金刚石与Cu的润湿性。
(4)镀合金。合金通常具有相较于其组元金属更低的熔点。选择含有活性元素的合金作为镀覆材料,在有效降低金刚石热损伤程度的同时,还可以利用其组分中的活性元素与金刚石反应生成碳化物层,提高界面润湿度。李文杰等[35]选用Cu-Sn-Ti钎料并在Ar保护下用高频感应钎焊对金刚石进行了预钎焊处理,制备了金刚石节块,通过三点弯试验发现:预钎焊的金刚石节块的抗弯强度明显高于镀Ti金刚石与常规金刚石节块的,说明胎体与金刚石的结合状态良好;切割性能试验表明,预钎焊金刚石节块的切割效率较镀Ti金刚石节块的高7%。DUAN等[36]研究发现在Ni-Cr合金中加入Cu-Ce合金粉后对金刚石进行预钎焊,可以降低金刚石的性能损失;当Cu-Ce合金加入的质量分数为30%时,金刚石的冲击韧性和静抗压强度的损失最小,分别为6%和12%。
作为强碳元素,Cr可以在较低的镀覆温度下实现金刚石表面的完全金属化转变[37-38]。张洪迪[38]对比了W、MoO3与Cr镀覆金刚石的区别,发现三者在金刚石上具有相似的金属化演变机制,均包含了弥散生长、择优生长(金刚石(100)面)、完全金属化以及择优开裂(金刚石(111)面)的过程,但Cr达到完全镀覆的温度较W与MoO3的更低。谢吉等[39]对比了真空微蒸发镀Cr和化学镀Cr的效果,发现化学镀Cr的镀层过厚,容易造成金刚石与镀层的热失配进而导致结合层破裂,因而真空镀Cr的效果明显好于化学镀Cr的,且真空镀Cr的绳锯测试寿命达到了3.95 m2/m,高于化学镀Cr的3.50 m2/m。龙涛等[37]探索了金刚石盐浴镀Cr的工艺,发现镀Cr金刚石表面结构随着C原子与Cr原子浓度而变化,由内到外分别为金刚石-CrxCy层、-Cr7C3层、-Cr层,并且镀层厚度应控制在3 μm内,以避免应力导致镀层开裂、脱落的现象。
2.1.2 金刚石表面的非金属镀层
(1)镀B。SHA等[40]利用磁控溅射法制备了镀B聚晶金刚石,在金刚石表面形成了B4C层,有效阻碍了Co元素对金刚石石墨化的催化作用,使得金刚石的石墨化温度和氧化温度分别提高了约100 ℃和30 ℃。马洪兵等[41]利用熔盐法对金刚石进行了镀B处理,测试结果表明:镀B金刚石的热导性以及界面强度明显提高,50%质量分数的镀B金刚石-Al复合材料的热导率达到了560 W/(m·K)。SUN等[42]将镀B金刚石在大气环境下加热1 h,加热温度为1 000 ℃,发现金刚石表面的B4C层可以与O2反应生成B2O3,进而有效地抑制金刚石的氧化。
(2)镀Si。Si形成涂层不仅可以阻止金刚石的进一步氧化,还可以与C原子结合形成SiC层,提高结合强度并进一步减少金刚石热损伤。MENG等[43]对比了镀Si PCD与常规PCD的热损伤性能,结果显示:镀Si PCD的抗氧化性与耐磨性明显高于常规PCD的,其开始氧化温度提高了12 ℃,耐磨性提高了30%。LU等[44]发现镀Si层使金刚石在烧结过程中不受胎体材料中Fe与Ni元素的侵蚀,提高了金刚石的热稳定性,以及金刚石与胎体材料的结合强度,镀Si金刚石的开始氧化温度为920 ℃,高于常规金刚石的开始氧化温度,且节块的抗弯强度提高了16.2%。ZHU等[45]利用放电等离子烧结制备了镀Si金刚石,测试结果表明:体积分数为50%的镀Si金刚石/Cu复合材料的热导率达到了535 W/(m·K)。
2.2 胎体材料性能调控
金刚石界面强度受胎体材料性能的影响,低熔点的胎体材料可以有效降低烧结温度,从而降低金刚石的石墨化程度;而胎体材料中的活性元素可以提高金刚石的界面强度,以及金刚石工具的性能。相比金刚石镀层,胎体材料的性能调控更易实施。目前,胎体材料的性能调控主要分为2个方向:合金优化与材料复合化。
2.2.1 合金优化
合金优化主要通过调节胎体材料的合金成分,实现降低金刚石热损伤的目的。高先哲等[46]在Cu-Sn-Ti预合金钎料中加入Fe、Al、Si粉末制备预混合钎料,发现在Si元素与金刚石的亲和作用以及Fe元素对金刚石的刻蚀作用下,金刚石表面形成了致密的TiC层。SI等[47]研究了不同含量的Hf元素对NiCrSiCuSn无硼钎料性能的影响,结果表明:Hf可以明显改善钎料的组织,增加Ni基钎料的流动性,并可与Ni结合形成Ni-Hf化合物消耗一定量的Ni,降低了金刚石的石墨化程度(图6)。CUI等[48]在Ni基钎料中加入Zr元素,发现Zr元素细化了钎料的晶粒,生成的Ni11Zr9减少了Ni-Cr合金对金刚石的侵蚀,降低了金刚石的石墨化程度与热损伤程度。
相较于常规晶态的Ni基合金,非晶态Ni基合金具有熔化温度低且范围极窄的特点,并且没有难熔的先结晶相,因而可以实现加热后的快速熔化与合金元素的快速扩散[49],适合作为钎焊金刚石的钎料。目前,非晶态Ni基钎料在金刚石工具中的应用较少。马伯江等[50]对比了非晶态和晶态Ni基钎料钎焊金刚石的效果,发现非晶态Ni基钎料的开始熔化温度为913.8 ℃(相应晶态Ni基钎料的为933.7 ℃),熔化温度区间宽度为80.4 ℃(相应晶态Ni基钎料的为110.4 ℃),950 ℃时45#钢的润湿面积约为4.89 cm2(相应晶态Ni基钎料的为0.50 cm2)。王超[51]利用非晶态Ni基合金对金刚石进行了预钎焊,硬度测试表明:非晶态Ni基合金预钎焊金刚石表面涂层的平均硬度为672.0 HV1,比常规Ni基合金预钎焊金刚石的高约100.0 HV1。
2.2.2 材料复合化
胎体材料复合化是指通过加入增强相增强胎体材料的力学性能,同时通过吸收胎体材料中的催化元素降低金刚石的石墨化程度。DING等[52]研究了TiB2对Ag-Cu-Ti钎料的影响,测试发现TiB2均匀分布在钎焊层中,提高了钎料的力学性能,并且可以明显抑制C与Ag-Cu-Ti钎料的反应,从而保护钎焊金刚石颗粒的完整性。YIN等[53]在Cu-Sn-Ti钎料中加入WC颗粒,发现少量WC颗粒可以有效降低Ti、Cu与Fe之间的反应强度,从而抑制这些元素对金刚石石墨化的催化作用,同时提高金刚石的结合强度;测试结果表明:随着WC颗粒含量的增多,节块界面的显微硬度从179 HV0.05增大到206 HV0.05。尹孝辉等[54]选择ZrC作为Cu-Sn-Ti钎料的增强相,EDS结果表明:少量ZrC颗粒可以促进金刚石表面碳化物的生成,从而提高金刚石的结合强度,当ZrC添加的质量分数为15%时,工具的切削性能最好且效率较高。ZHAO等[55]以石墨烯纳米片(graphene nano plates, GNPs)为增强相,研究了GNPs添加量对Ni-Cr合金钎焊金刚石的影响;发现随着GNPs添加量的增加,金刚石表面的碳化物形貌从长条形逐渐缩短,在GNPs添加的质量分数为4%时,短棒状碳化物转变为部分具有空心结构的针状物(图7),同时金刚石表面的石墨化程度随着GNPs添加量增大而降低(图8)[56]。
2.3 成型技术优化
成型过程是金刚石工具制备过程中非常重要的一环,直接决定了金刚石工具的性能与使用寿命[57]。在成型过程中,影响金刚石工具性能的参数主要有成型温度、保温时间、成型压力以及气氛环境等。成型温度与保温时间不仅决定胎体组织中晶粒的长大程度,还影响金刚石与胎体材料的界面生长状况,进而影响金刚石的结合强度,同时也对金刚石的热损伤程度有重要影响。成型压力主要影响胎体材料的致密度,进而影响胎体材料的力学性能。气氛环境一般为真空或保护气氛,但微量的水分或氧都极易引起金刚石的氧化,从而造成金刚石工具性能与使用寿命的恶化。因此,优化成型技术对金刚石工具的制备极其重要。目前,一般通过热压烧结、钎焊等方法制备金刚石工具。
2.3.1 热压烧结
热压烧结法作为粉末冶金的重要方法,一般是将预先制备的复合粉体装入特定石墨模具中,然后施加一定的压力与高温,保压保温一段时间后,即可得到相应的复合材料,具有过程相对简单易控制、可以实现快速成型的特点。甄春刚等[58]研究了热压预烧结温度对Co基胎体材料性能的影响,通过对比发现:在相同热压烧结工艺条件下(850 ℃,25 MPa,保温5 min),预烧结温度为800 ℃时(保温1 h)的胎体材料合金化基本完成,其晶粒细小,力学性能最佳。YANG等[59]测试了不同热压烧结温度(710、750和790 ℃)下制备的Cu-Co胎体材料的力学性能,发现随着烧结温度的升高,胎体材料对颗粒的把持力越强,且胎体材料的力学性能越好。徐强等[60]通过正交试验法分析了热压烧结过程中烧结温度、压力与保温时间对胎体材料力学性能的影响,发现对试样硬度与抗弯强度影响程度从大到小依次为烧结温度、压力与保温时间。
放电等离子烧结(spark plasma sintering, SPS)是新发展的粉末冶金方法,通过对烧结粉末加压并施加脉冲电场从而激发粉体表面的活化能,实现粉体低于熔点的致密烧结。郭洪凯[61]研究了不同SPS烧结温度对高熵合金结合剂性能的影响,结果显示:850 ℃时的高熵合金未烧结致密、性能较差;900 ℃时的最为致密,且抗弯性能与硬度最佳;当温度>950 ℃时,晶粒较为粗大,力学性能开始恶化。张毓隽等[62]通过对比不同SPS的烧结参数对Cu/金刚石复合材料相对密度与热导率的影响,发现最佳烧结温度为930 ℃,烧结压力的提高(从10 MPa到70 MPa)对相对密度的影响有限,但热导率有约15.0%的提高,而保温时间对相对密度影响不大,且热导率在保温时间超过20 min后基本稳定。
自蔓延高温合成(self-propagation high-temperature synthesis, SHS)是利用基体中不同成分反应产生的反应热作为热源使反应持续下去,从而最终获得所需的烧结体。在SHS制备金刚石工具领域,常用的胎体材料主要有Ti-Al、Fe-Al、Ni-Al以及MAX相体系等[63]。PENG等[64]采用SHS制备了Ni-Al合金金刚石工具,并引入Ni-Cr-P合金提高金刚石的黏接强度与金刚石工具的抗弯强度,结果发现:质量分数为40 %的Ni-Cr-P合金在基体中形成相互连结并均分分散的Ni-Cr-P相,同时在金刚石表面形成Cr3C2致密层,提高了金刚石与基体的结合强度。吴益雄等[65]选用Fe3Al结合剂制备金刚石工具,研究了不同烧结温度对金刚石工具加工性能的影响,结果显示:工具抗弯强度随着烧结温度的上升而提高,当烧结温度达到1 250 ℃时,其抗弯强度达到1 255 MPa。
2.3.2 钎焊
钎焊金刚石工具主要是利用含有活性元素的钎料作为粘结剂,通过高温钎焊过程,将金刚石与基体通过化学冶金结合在一起[66]。吴其亮等[67]采用Box-Behnken响应曲面法研究了钎焊温度、加热电流与保温时间对钎料层显微硬度与Ag-Cu-Ti-In钎料在金刚石表面铺展面积的影响,结果表明:理论最优钎焊参数是钎焊温度为900 ℃,加热电流为500 A,保温时间为13 s;采用此参数进行金刚石钎焊,钎料层显微硬度和钎料铺展面积与理论的相对误差分别为2.54%与4.36%。王志军[68]对比了激光钎焊与真空钎焊对Ni-Cr合金钎焊金刚石的影响,发现在钎焊金刚石过程中,金刚石表面的C原子可以快速扩散至钎料中,从而生成C-Cr化合物层,受C原子浓度梯度的影响,接近金刚石表面的碳化物为Cr3C2,远离金刚石表面的碳化物为Cr7C3;激光钎焊具有升温速度快的特点,同样的时间内,金刚石表面的C原子扩散更远,导致Cr3C2层比真空钎焊的厚(图9);但真空钎焊的高温时间更长,导致其Cr7C3层更厚(图10)。姚鹏等[69]研究了激光钎焊45#钢基金刚石工具的工艺,结果表明:激光功率较低(100 W)时,钎料未完全致密;而激光功率较高(140 、160 W)时,金刚石已开始石墨化;当激光功率为120 W时,金刚石结构完整,钎料表面致密平整。
2.3.3 增材制造
增材制造又称为“3D打印”,因其具有快速成型复杂零件的能力,逐渐成为金刚石工具制造工艺的发展方向之一。张俊涛等[70]通过选取激光熔化(selective laser melting, SLM)制备了金刚石TC4复合材料,发现尽管TC4含有Ti元素,但打印过程中金刚石与基体并未充分润湿,并且金刚石颗粒阻碍了熔池的流动,导致金刚石与基体存在孔隙;同时激光容易造成金刚石的热损伤,以及金刚石局部石墨化的情况;通过响应曲面分析法进行了工艺参数分析与优化,得到最佳的SLM工艺:激光功率为164 W,扫描速度为613 mm/s,扫描间距为0.045 mm。此时打印件的抗弯强度达到401 MPa。张绍和等[71]运用熔融沉积成型(fused deposition molding sintering, FDMS)制备了超薄金刚石锯片,结果表明:FDMS制备过程中的最高温度低于金刚石的热损伤温度,使得金刚石的结构得到最大限度的保留;但胎体的致密度稍差,导致金刚石节块的力学性能稍逊于传统热压烧结节块的性能。
3. 结语与展望
通过以上分析可以发现,金刚石工具制备过程中抑制金刚石热损伤的关键是降低成型温度,以及在提高金刚石浸润性的同时降低金刚石与胎体材料的反应烈度。基于此,抑制金刚石热损伤的研究未来可从以下几点进行:
(1)对金刚石界面进行微观尺度上的理论分析。当前,金刚石热损伤抑制技术的研究多集中在试验与表征研究上,尤其是对于金刚石-胎体/镀层界面,界面的形成过程与控制多停留在定性分析层面,缺乏深入系统的理论研究。因此,可以借助分子动力学仿真与第一性原理计算等理论方法,对成型过程中金刚石-胎体/镀层界面的形成过程与形成机理进行原子尺度的分析,构建相应的理论模型与理论体系,指导金刚石工具的设计与制备。
(2)建立金刚石工具胎体材料与服役环境相匹配的指导体系。目前,在金刚石工具的研究中,对于胎体材料的选择没有形成较为系统的指导规范,缺乏与加工对象相适应的胎体材料设计理论。应针对金刚石工具的具体加工对象、工况,结合常用胎体材料的熔点范围与性能特点,通过控制金刚石的热损伤程度与界面结合强度,实现金刚石工具性能与服役环境的适配。
(3)研究成型过程中金刚石界面的力学行为。金刚石的热应力主要来源于金刚石与界面层的热失配,研究金刚石界面的力学行为,尤其是界面裂纹的扩展行为,可为降低金刚石的应力损伤提供理论依据与方向,也是金刚石热损伤抑制技术的重要发展方向。
-
技术特征 镀层成分 结合状态 镀覆温度t / ℃ 金刚石热损伤 CVD Ti、Mo、W、Cr
及对应碳化物冶金结合 >850 有 PVD Ti、Mo、W、
Cr、Ni、B物理结合 < 400 无 电镀 Ni、Ni-W合金、
W-Co合金机械包覆 < 100 无 熔盐法 Ti、Mo、W、Cr
及对应碳化物冶金结合 850~1 100 有 预钎焊 Ni基合金、Cu基
合金、Ag基合金冶金结合 > 850 有 真空微蒸镀 Ti、Mo、W、Cr
及对应碳化物冶金结合 650~750 无 -
[1] 毛雅梅, 黑鸿君, 高洁, 等. 钎焊金刚石研究进展及其工具的应用 [J]. 机械工程学报,2022,58(4):80-93. doi: 10.3901/JME.2022.04.080MAO Yamei, HEI Hongjun, GAO Jie, et al. Research progress of brazing diamond and application of tools [J]. Journal of Mechanical Engineering,2022,58(4):80-93. doi: 10.3901/JME.2022.04.080 [2] 卢金斌, 汤峰, 孟普, 等. Ni-Cr合金真空钎焊金刚石的热损伤分析 [J]. 焊接学报,2010,31(8):25-28,114.LU Jinbin, TANG Feng, MENG Pu, et al. Thermal damage analysis of vacuum brazing diamond with Ni-Cr alloy [J]. Transactions of the China Welding Institution,2010,31(8):25-28,114. [3] 郭晓光, 翟昌恒, 金洙吉, 等. 铁基作用下的金刚石石墨化研究 [J]. 机械工程学报,2015,51(17):162-168. doi: 10.3901/JME.2015.17.162GUO Xiaoguang, ZHAI Changheng, JIN Zhuji, et al. The study of diamond graphitization under the action of iron-based catalyst [J]. Journal of Mechanical Engineering,2015,51(17):162-168. doi: 10.3901/JME.2015.17.162 [4] 吕祎强, 张振宇, 刘冬冬, 等. 金刚石损伤的原位扫描电镜研究 [J]. 硬质合金,2022,39(2):85-93. doi: 10.3969/j.issn.1003-7292.2022.02.002LV Yiqiang, ZHANG Zhenyu, LIU Dongdong, et al. Research on in-situ scanning electron microscope of diamond damage [J]. Cemented Carbides,2022,39(2):85-93. doi: 10.3969/j.issn.1003-7292.2022.02.002 [5] TULIC S, WAITZ T, CAPLOVICOVA M, et al. Catalytic graphitization of single-crystal diamond [J]. Carbon,2021,185:300-313. doi: 10.1016/j.carbon.2021.08.082 [6] 程伟. 金刚石磨粒与Ni-Cr合金固态反应的实验与仿真研究 [D]. 厦门: 华侨大学, 2022.CHENG Wei. Experimental and simulation study on solid-state reaction between diamond abrasives and Ni-Cr binary alloy [D]. Xiamen: Huaqiao University. 2022. [7] COOIL S P, WELLS J W, HU D, et al. Controlling the growth of epitaxial graphene on metalized diamond (111) surface [J]. Applied Physics Letters,2015,107:181603. doi: 10.1063/1.4935073 [8] CUI Z P, LI G, ZONG W J. A polishing method for single crystal diamond (100) plane based on nano silica and nano nickel powder [J]. Diamond and Related Materials,2019,95:141-153. doi: 10.1016/j.diamond.2019.04.016 [9] 杨亚楠, 王海阔, 侯志强, 等. 金刚石-WC-Co复合材料的高温高压合成 [J]. 金刚石与磨料磨具工程,2021,41(2):53-58. doi: 10.13394/j.cnki.jgszz.2021.2.0009YANG Yanan, WANG Haikuo, HOU Zhiqiang, et al. Fabrication of diamond-WC-Co composites at high temperature and high pressure [J]. Diamond & Abrasives Engineering,2021,41(2):53-58. doi: 10.13394/j.cnki.jgszz.2021.2.0009 [10] UEDA K, AICHI S, ASANO H. Direct formation of graphene layers on diamond by high-temperature annealing with a Cu catalyst [J]. Diamond and Related Materials,2016,63:148-152. doi: 10.1016/j.diamond.2015.10.021 [11] 孟普. Ni-Cr合金钎焊金刚石接头残余应力分析 [J]. 金刚石与磨料磨具工程,2013,33(5):57-60,66. doi: 10.13394/j.cnki.jgszz.2013.05.008MENG Pu. Residual stress analysis of diamond joint brazed with Ni-Cr alloy [J]. Diamond & Abrasives Engineering,2013,33(5):57-60,66. doi: 10.13394/j.cnki.jgszz.2013.05.008 [12] BUHL S, LEINENBACH C, SPOLENAK R, et al. Influence of the brazing parameters on microstructure, residual stresses and shear strength of diamond–metal joints [J]. Journal of Materials Science,2010,45:4358-4368. doi: 10.1007/s10853-010-4260-7 [13] MUKHOPADHYAY P, SIMHAN D R, GHOSH A. Challenges in brazing large synthetic diamond grit by Ni-based filler alloy [J]. Journal of Materials Processing Technology,2017,250:390-400. doi: 10.1016/j.jmatprotec.2017.08.004 [14] WANG S Y, XIAO B, SU S C, et al. Interfacial characteristics and thermal damage of brazed W-coated diamond with Ni- based filler alloy [J]. Diamond and Related Materials,2021,116:108401. doi: 10.1016/j.diamond.2021.108401 [15] FENG H, YU J K, TAN W. Microstructure and thermal properties of diamond/aluminum composites with TiC coating on diamond particles [J]. Materials Chemistry and Physics,2010,124:851-855. doi: 10.1016/j.matchemphys.2010.08.003 [16] 徐俊. 金刚石盐浴镀钛对金刚石/铝复合材料组织及性能的影响 [D]. 南京: 东南大学, 2019.XU Jun. Effect of salt bath plating Ti on diamond particles on the microstructure and properties of diamond/Al composites [D]. Nanjing:Southeast University. 2019. [17] 王艳辉. 金刚石磨料表面镀钛层的制备、结构、性能及应用 [D]. 秦皇岛: 燕山大学, 2003.WANG Yanhui. Preparation, structure, properties and applications of titanium coating on diamond abrasive [D]. Qinhuangdao: Yanshan University, 2003. [18] BHOWMICK S, BANERJI A, ALPAS A T. Friction reduction mechanisms in multilayer graphene sliding against hydrogenated diamond-like carbon [J]. Carbon,2016,109:795-804. doi: 10.1016/j.carbon.2016.08.036 [19] HONG S M, AKAISHI M, KANDA H, et al. Behaviour of cobalt infiltration and abnormal grain growth during sintering of diamond on cobalt substrate [J]. Journal of Materials Science,1988,23(11):3821-3826. doi: 10.1007/BF01106798 [20] 冒爱琴, 何宜柱, 郑翠红, 等. 金刚石表面金属化的研究现状 [J]. 材料导报,2005(2):31-33. doi: 10.3321/j.issn:1005-023X.2005.02.009MAO Aiqin, HE Yizhu, ZHENG Cuihong, et al. Development of cladding on diamond [J]. Materials Reports,2005(2):31-33. doi: 10.3321/j.issn:1005-023X.2005.02.009 [21] 栗晓龙. 金刚石表面镀覆层对金属结合剂金刚石工具性能影响 [D]. 郑州: 河南工业大学, 2018.LI Xiaolong. Effect of the coating layer on the diamond surface on the properties of metal bonded diamond tools [D]. Zhengzhou: Henan University of Technology, 2018. [22] 刘婷婷. 金刚石颗粒的表面镀镍及其在固结磨料研磨中的应用[D]. 南京: 南京航空航天大学, 2014.LIU Tingting. Surface nickel plating of diamond particles and its application in fixed abrasive lapping [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014. [23] 张一翔, 沈志刚. 磁控溅射金刚石微粉表面镀镍及其在电镀金刚石线锯上的应用 [J]. 中国粉体技术,2017,23(3):21-25. doi: 10.13732/j.issn.1008-5548.2017.03.004ZHANG Yixiang, SHEN Zhigang. Ni coating on surface of diamond microparticles by magnetron sputtering method for enhanced performance of diamond wire [J]. China Powder Science and Technology,2017,23(3):21-25. doi: 10.13732/j.issn.1008-5548.2017.03.004 [24] 栗晓龙, 肖长江, 栗正新. 金刚石镀镍和钛对其金属烧结制品强度的影响 [J]. 山东化工,2017,46(17):51-52. doi: 10.3969/j.issn.1008-021X.2017.17.020LI Xiaolong, XIAO Changjiang, LI Zhengxin. Study of diamond coated ni and ti influencing on strength of the metal powder sintering products [J]. Shandong Chemical Industry,2017,46(17):51-52. doi: 10.3969/j.issn.1008-021X.2017.17.020 [25] 方莉俐, 薛丽沙. 金刚石粒度对金刚石镀镍的影响 [J]. 电镀与涂饰,2015,34(23):1351-1354. doi: 10.3969/j.issn.1004-227X.2015.23.005FANG Lili, XUE Lisha. Effect of size of diamond particles on nickel plating of diamond [J]. Electroplating & Finishing,2015,34(23):1351-1354. doi: 10.3969/j.issn.1004-227X.2015.23.005 [26] LI A , SHI L , ZHANG W, et al. A simple way to fabricate Ti6Al4V matrix composites reinforced by graphene with exceptional mechanical properties [J]. Materials Letters,2019,257:126750. doi: 10.1016/j.matlet.2019.126750 [27] 韩金江, 陈冰威, 路朋献, 等. 金刚石/铜(银、碳化钛)界面性质的第一性原理计算 [J]. 金刚石与磨料磨具工程,2022,42(5):535-542. doi: 10.13394/j.cnki.jgszz.2022.5002HAN Jinjiang, CHEN Bingwei, LU Pengxian, et al. First-principles calculations of diamond/copper (silver, titanium carbide) interface properties [J]. Diamond & Abrasives Engineering,2022,42(5):535-542. doi: 10.13394/j.cnki.jgszz.2022.5002 [28] WEI C L, XU X , WEI B Z, et al. Titanium coating on the surface of diamond particles by a novel rapid low-temperature salt bath plating method [J]. Chemical Physics Letters,2020,761:138091. doi: 10.1016/j.cplett.2020.138091 [29] 武玺旺, 皇甫战彪, 刘雪坤, 等. 熔盐法合成Ti和TiC镀覆层对金刚石热稳定性的影响 [J]. 金刚石与磨料磨具工程,2023,43(2):196-201. doi: 10.13394/j.cnki.jgszz.2022.0054WU Xiwang, HUANGFU Zhanbiao, LIU Xuekun, et al. Effect of Ti and TiC coating on the thermal stability of diamond [J]. Diamond & Abrasives Engineering,2023,43(2):196-201. doi: 10.13394/j.cnki.jgszz.2022.0054 [30] 郭梦华, 张鹏, 栗正新, 等. 利用表面镀钛及掺杂氧化镧改善金刚石/铜复合材料性能的研究 [J/OL]. 中国稀土学报, 1-17 [2024-09-30]. http://kns.cnki.net/kcms/detail/11.2365.TG.20230627.1232.008.html.GUO Menghua, ZHANG Peng, LI Zhengxin, et al. Improving the properties of diamond/Cu composites by coating Titanium on diamond surface and doping La2O3[J/OL]. Journal of the Chinese Society of Rare Earths, 1-17[2024-09-30]. http://kns.cnki.net/kcms/detail/11.2365.TG.20230627.1232.008.html [31] SHA X H, YUE W, ZHANG H C, et al. Enhanced oxidation and graphitization resistance of polycrystalline diamond sintered with Ti-coated diamond powders [J]. Journal of Materials Science & Technology,2020,43(8):64-73. doi: 10.1016/j.jmst.2020.01.031 [32] 王树义, 肖冰, 肖皓中, 等. 镍基钎料真空钎焊镀钨金刚石的研究 [J]. 金刚石与磨料磨具工程,2023,43(2):202-209. doi: 10.13394/j.cnki.jgszz.2022.0134WANG Shuyi, XIAO Bing, XIAO Haozhong, et al. Research on vacuum brazing of W-coated diamond with Ni-based filler alloy [J]. Diamond & Abrasives Engineering,2023,43(2):202-209. doi: 10.13394/j.cnki.jgszz.2022.0134 [33] 李建伟, 张海龙, 张少明, 等. 金刚石表面镀钨对铜/金刚石复合材料热导率的影响 [J]. 功能材料,2016,47(1):1034-1037. doi: 10.3969/j.issn.1001-9731.2016.01.007LI Jianwei, ZHANG Hailong, ZHANG Shaoming, et al. On the thermal conductivity of Cu/diamond composite of diamond particles with tungsten coating [J]. Journal of Functional Materials,2016,47(1):1034-1037. doi: 10.3969/j.issn.1001-9731.2016.01.007 [34] 郭嘉鹏. 金刚石增强铜基复合材料的制备及性能研究 [D]. 兰州: 兰州理工大学, 2022.GUO Jiapeng. Preparation and properties of diamond reinforced copper matrix composites [D]. Lanzhou: Lanzhou University of Technology, 2022. [35] 李文杰, 肖冰, 段端志, 等. 铜基预钎焊金刚石锯片的界面分析及其性能研究 [J]. 金刚石与磨料磨具工程,2014,34(2):44-47. doi: 10.13394/j.cnki.jgszz.2014.2.0010LI Wenjie, XIAO Bing, DUAN Duanzhi, et al. Interface analysis and performance evaluation of the Cu-based pre-brazed diamond saw blade [J]. Diamond & Abrasives Engineering,2014,34(2):44-47. doi: 10.13394/j.cnki.jgszz.2014.2.0010 [36] DUAN D Z , XIAO B, WANG W, et al. Interface characteristics and performance of pre-brazed diamond grains with Ni–Cr composite alloy [J]. Journal of Alloys and Compounds,2015,644:626-631. doi: 10.1016/j.jallcom.2015.03.269 [37] 龙涛, 董应虎, 张瑞卿, 等. 金刚石表面金属化可控Cr层的形成机制及性能 [J]. 材料热处理学报,2015,36(1):132-137. doi: 10.13289/j.issn.1009-6264.2015.01.026LONG Tao, DONG Yinghu, ZHANG Ruiqing, et al. Formation mechanism and properties of controllable Cr layer on diamond surface by salt bath plating [J]. Transactions of Materials and Heat Treatment,2015,36(1):132-137. doi: 10.13289/j.issn.1009-6264.2015.01.026 [38] 张洪迪. 表面金属化金刚石/铜复合材料导热模型、界面结构与热变形行为研究 [D]. 上海: 上海交通大学, 2018.ZHANG Hongdi. Theoretical model of thermal conductivity, interfacial structure and hot deformation behavior of surface metallized diamond/copper composites [D]. Shanghai: Shanghai Jiao Tong University, 2018. [39] 谢吉, 甄春刚, 覃光明, 等. 金刚石镀覆及热处理在金刚石工具中的应用 [J]. 超硬材料工程,2020,32(3):1-7. doi: 10.3969/j.issn.1673-1433.2020.03.001XIE Ji, ZHEN Chungang, QIN Guangming, et al. Application of diamond coating and heat treatment on diamond tools [J]. Superhard Material Engineering,2020,32(3):1-7. doi: 10.3969/j.issn.1673-1433.2020.03.001 [40] SHA X H, YUE W, ZHANG H C, et al. Thermal stability of polycrystalline diamond compact sintered with boron-coated diamond particles [J]. Diamond and Related Materials,2020,104:107753. doi: 10.1016/j.diamond.2020.107753 [41] 马洪兵, 白华, 薛晨, 等. 镀硼金刚石-金属基复合材料的制备及其性能研究 [J]. 硬质合金,2017,34(5):314-319. doi: 10.3969/j.issn.1003-7292.2017.05.004MA Hongbing, BAI Hua, XUE Cheng, et al. Research on preparation and properties of boron-coated diamond-metal matrix composite [J]. Cemented Carbides,2017,34(5):314-319. doi: 10.3969/j.issn.1003-7292.2017.05.004 [42] SUN Y, MENG Q, QIAN M,et al. Enhancement of oxidation resistance via a self-healing boron carbide coating on diamond particles [J]. Scientific Reports,2016(6):20198. doi: 10.1038/srep20198 [43] MENG D, YAN G, YUE W, et al. Thermal damage mechanisms of Si-coated diamond powder based polycrystalline diamond [J]. Journal of the European Ceramic Society,2018,38(13):4338-4345. doi: 10.1016/j.jeurceramsoc.2018.05.017 [44] LU J, WANG Y H , QI X H , et al. Structure and characteristics of Si-coated diamond grits [J]. 金刚石与磨料磨具工程,2005(6):13-15. doi: 10.13394/j.cnki.jgszz.2005.06.004 [45] ZHU C X , WANG C , LANG J, et al. Si-coated diamond particles reinforced copper composites fabricated by spark plasma sintering process [J]. Materials and Manufacturing Processes,2013,28(1/2/3):143-147. doi: 10.1080/10426914.2012.746789 [46] 高先哲, 肖冰, 管海军, 等. Cu-Sn-Ti钎料的改性设计及性能分析 [J]. 金刚石与磨料磨具工程,2018,38(1):32-36,40. doi: 10.13394/j.cnki.jgszz.2018.1.0005GAO Xianzhe, XIAO Bing, GUAN Haijun, et al. Modification design and performance analysis of Cu-Sn-Ti solder [J]. Diamond & Abrasives Engineering,2018,38(1):32-36,40. doi: 10.13394/j.cnki.jgszz.2018.1.0005 [47] SI S H , DING Z C , ZUO R Z , et al. Adding Hf element to improve the strength and wear resistance of diamond brazed with Ni-based boron-free brazing filler metal [J]. Diamond and Related Materials,2022,121:108723. doi: 10.1016/j.diamond.2021.108723 [48] CUI B, WANG P B, ZHAO W X, et al. Adding Zr element to improve the strength and mechanical properties of diamond vacuum-brazed with Ni-Cr boron-free filler alloy [J]. Diamond and Related Materials,2023,133:109722. doi: 10.1016/j.diamond.2023.109722 [49] 李力, 李小强, 胡可, 等. 真空钎焊TiAl基合金用Ti-Zr-Cu-Ni-Co-Mo钎料的钎焊性能 [J]. 中国有色金属学报(英文版),2019,29(4):754-763. doi: 10.1016/S1003-6326(19)64985-XLI Li, LI Xiaoqiang, HU Ke, et al. Brazeability evaluation of Ti-Zr-Cu-Ni-Co-Mo filler for vacuum brazing TiAl-based alloy [J]. Transactions of Nonferrous Metals Society of China,2019,29(4):754-763. doi: 10.1016/S1003-6326(19)64985-X [50] 马伯江, 王镇, 王超. 非晶Ni基合金感应钎焊微粉金刚石的研究 [J]. 硬质合金,2020,37(6):417-422. doi: 10.3969/j.issn.1003-7292.2020.06.002MA Bojiang, WANG Zhen, WANG Chao. Study on induction brazing of micro-powder diamond with an amorphous ni-based alloy [J]. Cemented Carbide,2020,37(6):417-422. doi: 10.3969/j.issn.1003-7292.2020.06.002 [51] 王超. 非晶Ni基合金阻焊金刚石磨粒的研究 [D]. 青岛: 青岛科技大学, 2022.WANG Chao. Research on resistance welding of diamond grits using amorphous nickel-based alloys [D]. Qingdao: Qingdao University of Science Technology. 2022. [52] DING W F , XU J H,CHEN Z Z, et al. A study on effects of TiB2 contents on reactive products and compressive strength of brazed CBN grains [J]. Surface and Interface Analysis,2009,41:238-243. doi: 10.1002/sia.3013 [53] YIN X H, XU F, MIN C Y, et al. Promoting the bonding strength and abrasion resistance of brazed diamond using Cu–Sn–Ti composite alloys reinforced with tungsten carbide [J]. Diamond and Related Materials,2021,112:108239. doi: 10.1016/j.diamond.2021.108239 [54] 尹孝辉, 徐凡, 徐东, 等. 添加ZrC增强相的Cu-Sn-Ti钎料真空钎焊金刚石的微观结构和磨削性能的研究 [J]. 机械工程学报,2021,57(18):182-189. doi: 10.3901/JME.2021.18.182YIN Xiaohui, XU Fan, XU Dong, et al. Research on microstructure and grinding performance of vacuum brazed diamond with zrc reinforced cu-sn-ti composite alloys [J]. Journal of mechanical engineering,2021,57(18):182-189. doi: 10.3901/JME.2021.18.182 [55] ZHAO J, GUO M, HU S P, et al. Brazing of large synthetic diamond grits using graphene nanoplatelets reinforced Ni-Cr composite fillers [J]. Diamond and Related Materials,2020,109:108004. doi: 10.1016/j.diamond.2020.108004 [56] 郭民. 石墨烯增强Ni-Cr复合钎料钎焊金刚石工艺及机理研究 [D].上海: 上海工程技术大学, 2021.GUO Min. Research on process and mechanism of diamond brazing with gnps-reinforced ni-cr composite filler [D]. Shanghai: Shanghai University of Engineering Science, 2021. [57] 杨理清, 骆颖, 罗文来. 烧结保温时间对金刚石工具产品性能的影响 [J]. 超硬材料工程,2016,28(6):10-14. doi: 10.3969/j.issn.1673-1433.2016.06.004YANG Liqing, LUO Ying, LUO Wenlai. The influence of sintering holding time on the performance of diamond tools product [J]. Superhard Material Engineering,2016,28(6):10-14. doi: 10.3969/j.issn.1673-1433.2016.06.004 [58] 甄春刚, 覃光明, 谢吉, 等. 预烧结对钴基胎体性能的影响 [J]. 超硬材料工程,2019,31(5):33-36. doi: 10.3969/j.issn.1673-1433.2019.05.008ZHEN Chungang, QIN Guangming, XIE Ji, et al. Effect of pre-sintered process on the properties of Co-based matrix [J]. Superhard Material Engineering,2019,31(5):33-36. doi: 10.3969/j.issn.1673-1433.2019.05.008 [59] YANG L, HONG F D, WEN S L. Effects of sintering temperature on the properties of Cu-Co-based alloys matrix [J]. Advanced Materials Research,2011,1169(201/202/203):1757-1762. doi: 10.4028/www.scientific.net/AMR.201-203.1757 [60] 徐强, 刘一波, 杨志威. 热压烧结工艺参数对金刚石工具胎体力学性能的影响 [J]. 超硬材料工程,2020,32(6):9-14. doi: 10.3969/j.issn.1673-1433.2020.06.002XU Qiang, LIU Yibo, YANG Zhiwei. Influence of hot press sintering technical parameters on mechanical properties of diamond tools matrix [J]. Superhard Material Engineering,2020,32(6):9-14. doi: 10.3969/j.issn.1673-1433.2020.06.002 [61] 郭洪凯. 金刚石工具用高熵合金结合剂的研究 [D]. 秦皇岛: 燕山大学, 2016.GUO Hongkai. Research for the high entropyalloys bond of diamond abrasive tools [D]. Qinhuangdao: Yanshan University, 2016. [62] 张毓隽, 童震松, 沈卓身. SPS工艺对铜/金刚石复合材料性能的影响 [J]. 电子元件与材料,2009,28(10):37-40. doi: 10.3969/j.issn.1001-2028.2009.10.012ZHANG Yujun, TONG Zhensong, SHEN Zhuoshen. Effect of spark plasma sintering process on the properties of Cu/diamond composite material [J]. Electronic Components and Materials,2009,28(10):37-40. doi: 10.3969/j.issn.1001-2028.2009.10.012 [63] 武美玲, 尹育航, 丁冬海, 等. 自蔓延高温合成法制备金刚石工具材料研究现状 [J]. 材料热处理学报,2023,44(5):1-15. doi: 10.13289/j.issn.1009-6264.2022-0500WU Meiling, YIN Yuhang, DING Donghai, et al. Research status of diamond tool materials prepared by self-propagating high-temperature synthesis [J]. Transactions of Materials and Heat Treatment,2023,44(5):1-15. doi: 10.13289/j.issn.1009-6264.2022-0500 [64] PENG J W, ZHANG F L, HUANG Y J, et al. Preparation a nickel-aluminide bonded diamond tool by self-propagating high-temperature synthesis and strengthening by nickel-chromium-phosphorus alloy and copper [J]. International Journal of Refractory Metals and Hard Materials,2019,82:100-109. doi: 10.1016/j.ijrmhm.2019.04.002 [65] 吴益雄, 陈欣宏, 彭家万, 等. 基于Fe-Al自蔓延反应的金刚石工具制备及性能研究 [J]. 超硬材料工程,2021,33(2):1-6. doi: 10.3969/j.issn.1673-1433.2021.02.001WU Yixiong, CHEN Xinhong, PENG Jiawan, et al. Study on preparation and performance of diamond tools based on Fe-Al self-propagating reaction [J]. Superhard Material Engineering,2021,33(2):1-6. doi: 10.3969/j.issn.1673-1433.2021.02.001 [66] 王光祖, 方占江. 钎焊金刚石工具的研究综述 [J]. 超硬材料工程,2022,34(1):32-36. doi: 10.3969/j.issn.1673-1433.2022.01.007WANG Guangzu, FANG Zhanjiang. Review of research progress on brazed diamond tools [J]. Superhard Material Engineering,2022,34(1):32-36. doi: 10.3969/j.issn.1673-1433.2022.01.007 [67] 吴其亮, 于爱兵, 孙磊, 等. 聚晶金刚石与高速钢的真空钎焊工艺研究 [J]. 材料保护,2021,54(7):112-116,121. doi: 10.16577/j.cnki.42-1215/tb.2021.07.020WU Qiliang, YU Aibing, SUN Lei, et al. Study on vacuum brazing technology of polycrystalline diamond and high speed steel [J]. Materials Protection,2021,54(7):112-116,121. doi: 10.16577/j.cnki.42-1215/tb.2021.07.020 [68] 王志军. 激光钎焊金刚石颗粒界面结合特征及磨损性能研究 [D]. 长沙: 长沙理工大学, 2020.WANG Zhijun. Research on interfacial bonding characteristics and wear properties of laser brazed diamond particles [D]. Changsha: Changsha University of Science & Technology, 2020. [69] 姚鹏, 余旭东, 钟素娟, 等. 细粒度金刚石/45钢基体的激光钎焊工艺研究 [J]. 超硬材料工程,2020,32(5):13-17. doi: 10.3969/j.issn.1673-1433.2020.05.004YAO Peng, YU Xudong, ZHONG Sujuan, et al. Study on brazing fine-grained diamonds onto 45 steel by laser heating [J]. Superhard Material Engineering,2020,32(5):13-17. doi: 10.3969/j.issn.1673-1433.2020.05.004 [70] 张俊涛, 黄淼俊, 胡子健, 等. 选区激光熔化制备金刚石/TC4复合材料的成型工艺及性能分析 [J]. 机电信息,2021(15):46-49. doi: 10.3969/j.issn.1671-0797.2021.15.019ZHANG Juntao, HUANG Miaojun, HU Zijian, et al. Forming process and performance analysis of diamond/TC4 composite materials prepared by selective laser melting [J]. Mechanical and Electrical Information,2021(15):46-49. doi: 10.3969/j.issn.1671-0797.2021.15.019 [71] 张绍和, 苏舟, 刘磊磊, 等. SLS和FDMS制造超薄金刚石锯片对比研究 [J]. 金刚石与磨料磨具工程,2021,41(1):38-43. doi: 10.13394/j.cnki.jgszz.2021.1.0007ZHANG Shaohe, SU Zhou, LIU Leilei, et al. Comparative study on ultra-thin diamond saw blades made by SLS and FDMS [J]. Diamond & Abrasives Engineering,2021,41(1):38-43. doi: 10.13394/j.cnki.jgszz.2021.1.0007 -