Preparation and performance characterization of (Ti,Nb) Cx composite material
-
摘要: 以TiC与过渡族金属Nb为原料,在机械合金化(mechanical alloying , MA)下制备多种非化学计量比的(Ti, Nb) Cx 聚晶金刚石(polycrystalline diamond, PCD)刀具结合剂。通过X射线衍射仪对复合材料烧结体的物相组成等进行分析,再通过扫描电子显微镜对复合材料的断口形貌进行观察,并用维氏硬度计测量复合材料的硬度和断裂韧性。结果表明:在
1300 ~1700 ℃的范围内,温度越高TiC和 Nb的固溶程度越好;在同一烧结温度下,(Ti, Nb) Cx复合材料的硬度随着金属Nb占比变大而逐渐升高;在同一金属Nb占比下,温度越高Nb与TiC的固溶程度越好。同时, (Ti, Nb) C0.5复合材料的力学性能最优,在1600 ℃时达到硬度最大值23.0 GPa,且其断裂韧性最高为7.20 MPa·m1/2。-
关键词:
- TiC /
- Nb /
- (Ti, Nb) Cx /
- 非化学计量比 /
- 性能
Abstract: Objectives: The aim was to prepare a variety of non-stoichiometric (Ti, Nb)Cx PCD tool binder composites using TiC and transition metal Nb by mechanical alloying (MA) technology. The effects of different sintering temperatures and Nb contents on the phase compositions, microstructures, and mechanical properties of the composites were investigated to provide a scientific basis for optimizing the properties of PCD tool binders. The specific tasks included preparing (Ti, Nb)Cx composites with varying ratios, analyzing their solid-solution behavior at different temperatures, and evaluating their hardness and fracture toughness. Methods: High purity TiC and Nb powders were selected as raw materials for the experiment, and the MA technology was used to achieve uniform mixing of the two materials. In order to investigate the effect of sintering temperature on the properties of composite materials, various sintering temperatures ranging from 1300 to 1700 ℃ were set. The sintered samples were subjected to phase analysis using an X-ray diffractometer, and the data were analyzed using Jade software. Subsequently, the fracture morphology of the sintered body was observed using scanning electron microscopy (SEM), and the hardness and fracture toughness of the composite materials were measured using a Vickers hardness tester. Results: Within the sintering temperature range of1300 to1700 ℃, the solid-solution degree of TiC and Nb gradually increases with the increase in temperature. At higher temperatures, the diffusion between TiC and Nb accelerates, forming a more stable solid-solution, and the phase composition tends to stabilize. At the same sintering temperature, the hardness of the (Ti, Nb)Cx composite increases gradually with the increase in Nb content, indicating that the introduction of Nb enhances the overall hardness of the composite. Especially when the sintering temperature is 1600 ℃, the (Ti, Nb)C0.50.5 composite exhibits the best mechanical properties with a hardness of 23.0 GPa and fracture toughness of 7.20 MPa·m1/2. The results show that under these temperature and ratio conditions, the composite achieves the best solid-solution state, has fewer internal defects, moderate grain size, and optimal mechanical properties. Conclusions: The sintering temperature and Nb content have significant impacts on the phase composition and mechanical properties of (Ti,Nb)Cx composite materials. Controlling these two parameters can optimize the hardness and toughness of the composite materials, thereby enhancing their application potential in PCD cutting tools. The higher sintering temperature is conducive to the full solid-solution of TiC and Nb, forming a more stable crystalline phase structure and improving the mechanical properties of the material. Future research could explore the influences of introducing other transition group metals on the properties of composite materials in order to develop higher-performance PCD tool binders. Others: Although the main objective of this study is to optimize the performance of (Ti,Nb)Cx PCD tool binders, the mechanical alloying techniques and analytical methods used in this research have the potential for broader applications. The mechanical alloying technology is not only suitable for the development of PCD tool materials but also for the preparation of other high-performance composite materials. At the same time, the combination of X-ray diffraction analysis and scanning electron microscopy provides valuable data support for the field of materials science, which helps deepen the understanding of the microstructure and phase composition of materials, thereby promoting research progress in the field.-
Key words:
- TiC /
- Nb /
- (Ti, Nb) Cx /
- non-stoichiometric ratio /
- performance
-
TiC基复合材料因具有较好的力学性能、化学特性以及与金属优异的相容性而广泛应用于多种增强材料中[1-2]。同时,TiC基复合材料重量轻、强度高、耐腐蚀性能好、生物相容性好[3-4]。且TiC与Al2O3、WC 、TiN等原料可以制成具有高熔点、高硬度及优良化学稳定性的复相陶瓷材料,是聚晶金刚石(polycrystalline diamond, PCD)切削工具及耐磨部件的优选材料[5]。
但总的来说,TiC基复合材料的烧结性能不佳,往往需要很高的温度才能和金刚石烧结。其中的(Ti, Nb)C固溶体粉末直接烧结后的复合材料具有独特的弱“核−环”结构,使“核−环”界面的应力集中现象显著减少,因而有利于复合材料综合性能提高[6-9]。此外,PCD刀具切削工件时有大量的热量产生, PCD结合剂的热膨胀系数应与金刚石接近,以避免金刚石晶粒内部和边界出现大量的微裂纹和缺陷[10-11]。
而非化学计量比的PCD结合剂可以和金刚石良好结合,使PCD刀具材料的力学性能保持相对一致,且其硬度和断裂韧性分布均匀。与传统结合剂相比,TiC基金属陶瓷结合剂可以与金刚石在高温高压烧结过程中反应形成非化学计量比碳化物,并提供大量的C空位。这些C空位能提供扩散路径,加速各化合物之间的物质交换,降低烧结温度,从而使PCD的综合性能得到进一步提升[12-17]。
制备PCD刀具用(Ti, Nb) Cx结合剂,探讨不同摩尔比的TiC和过渡族金属Nb机械合金化(mechanical alloying, MA)后的烧结行为。同时,对(Ti, Nb)Cx复合材料烧结体的微观断口组织形貌进行观察,并对其力学性能进行测试与分析,以期制备出性能优良的(Ti, Nb) Cx结合剂。
1. 试验部分
(1)使用细化和退火处理后的TiC粉末(粒径为1~3 μm,纯度为99.5%)和金属Nb粉(粒径为1~3 μm,纯度为99.5%)为原料,用QM-3SP4型行星球磨机MA制备(Ti, Nb) Cx混合粉末,TiC和Nb的摩尔比分别为8∶2,7∶3,6∶4和5∶5, 即混合粉末的分子式可分别表示为(Ti, Nb) C0.8,(Ti, Nb) C0.7,(Ti, Nb) C0.6,(Ti, Nb) C0.5。(2)球磨时,ϕ8 mm、ϕ5 mm、ϕ2 mm的3种WC硬质合金球质量比为6∶3∶1。 将20 g复合粉体原料、200 g硬质合金球放入WC硬质合金罐中,在450 r/min 下 MA 60 h,得到混合粉末。(3)采用VVSgr-40-2000型真空碳管炉在400 ℃和真空下对混合粉末退火,保温30 min后随炉冷却至室温;将混合粉末放入ϕ10 cm的石墨模具中,在30 MPa下预压成型,预压保持时间为60 s。(4) 使用LABOXTM-110型放电等离子烧结机在氩气环境中烧结预压成型的坯体 [18],烧结时烧结压力为50 MPa,烧结温度为
1300 ~1700 ℃,升温速率为50 ℃/min,达到烧结温度后保温10 min,得到(Ti, Nb) Cx复合材料烧结体。(5)采用Rigaku D/max-2500PC型 X射线衍射仪对复合材料烧结体的物相进行表征[19]。采用S-4800型场发射电镜观察复合材料烧结体断口的显微组织形貌。使用HVS-1000型维氏硬度计对(Ti, Nb) Cx烧结体的硬度进行测量,测量时载荷分别为100、200、300、500和1000 g,载荷保持时间为15 s。烧结体的断裂韧性根据Shetty方程[20]及硬度试验产生的裂纹长度计算。2. 结果与讨论
(Ti,Nb) Cx在
1300 ~1700 ℃时的烧结体物相组成如图1所示,图1的1表示原始混合粉末,2、3、4、5、6分别表示烧结温度为1300 、1400 、1500 、1600 和1700 ℃时的烧结体。由于烧结温度为1700 ℃时,TiC和Nb的摩尔比为8∶2、5∶5时的原料与石墨模具部分熔融,烧结体被破坏,因此这2个配比下只进行烧结温度为1300 和1600 ℃时的烧结行为研究,而没有1 700 ℃时的烧结体样品。由图1可以看出:不论Nb占比如何,Nb原子均能进入TiC晶体结构中,与TiC生成面心立方结构(fcc)复合化合物(Ti, Nb) Cx。由于Nb的原子半径比Ti的大,Nb原子进入TiC基体导致TiC晶格参数变大,TiC主峰位随着温度的升高向小角度偏移。且在
1300 ~1700 ℃的烧结温度下,Nb和 TiC固溶程度随烧结温度升高而升高。温度升高,TiC的衍射峰变窄,进而发生晶粒长大现象。图2为(Ti, Nb) C0.8复合材料烧结体在不同烧结温度下的断口形貌。如图2所示:温度在
1300 ℃和1400 ℃时,烧结体致密度不高,各颗粒大小形态不均匀,结合不紧密;烧结温度增至1500 ℃时,颗粒大小均匀,断面大部分为沿晶断裂,界面反应强烈,组织逐渐致密。图3为不同烧结温度下的(Ti, Nb) C0.8粒径分布。从图3可以看出:在烧结温度为1600 ℃时,其晶粒尺寸较1500 ℃时的明显增大,且出现个别晶粒异常长大现象。图4为(Ti, Nb) C0.8、(Ti, Nb) C0.7、(Ti, Nb) C0.6在
1600 ℃时烧结后的样品断口形貌。由图4可知:当温度一定时,金属Nb的占比越大,烧结体的固溶程度越好,烧结体中空隙越少,复合材料烧结体的致密度也越高。其中,(Ti, Nb) C0.6烧结体的大颗粒与小颗粒相互重叠,界面反应剧烈,颗粒间尺寸差异最大。据外推函数Nelson-Riley的关系可得,TiC的晶胞参数为
0.4327 nm[21]。图5 为(Ti, Nb) C0.5 、(Ti, Nb) C0.8的晶胞参数。如图5所示:(Ti, Nb) C0.8复合材料的晶胞参数随着烧结温度的升高逐渐变小,其最小值为0.4347 nm。说明在1300 ~1600 ℃范围内,(Ti, Nb) C0.8复合材料的晶胞参数均大于TiC的,且Nb原子代替部分Ti原子占据TiC的晶体结构。同时,在同一烧结温度条件下,(Ti, Nb) C0.5复合材料的晶胞参数均大于(Ti, Nb) C0.8的,说明Nb含量越高,TiC对Nb的固溶程度越大,引起的晶胞参数也变大,这与图1的XRD结果相一致。图6为(Ti, Nb) Cx复合材料在
1300 ~1700 ℃烧结温度下的维氏硬度和断裂韧性。从图6可以看出:在烧结温度相同的情况下,Nb的占比越大,(Ti, Nb) Cx复合材料的硬度越高,且复合材料的硬度随烧结温度增加而升高;同时,(Ti, Nb) C0.5的硬度值最大,为23.0 GPa,且其断裂韧性达到最大值7.20 MPa·m1/2。综合来看,(Ti, Nb) C0.5复合材料的力学性能最佳。3. 讨论
由于PCD结合剂性能直接关系到PCD的整体性能,所以要求PCD结合剂的热膨胀系数与金刚石的接近,且具有高硬度、高韧性[22-24]。同时,当结合剂和金刚石结合良好时,可以确保刀具在切削工件时不会变形[25]。
随着科技的进步,PCD用金刚石的颗粒尺寸越来越小,如何使粒度更小的金刚石与结合剂更好地结合,成为当下迫切需要解决的问题[25-26]。非化学计量比的(Ti, Nb) Cx复合材料由于存在大量C空位,所以Ti—C共价键的浓度也会降低,从而减少烧结时所需的能量[27]。不仅如此,由于C原子的减少,增加了Ti—C键的金属性,导致复合材料的断裂韧性增大[1,28]。且由于非化学计量比的(Ti, Nb) Cx提供了大量的C空位,为原子扩散提供了通道,可以大幅度地降低复合材料的烧结温度[28]。因此,(Ti, Nb) Cx在兼顾TiC基陶瓷的高硬度和高温稳定性的同时,也能降低TiC基陶瓷较高的烧结温度,且在一定程度上提高TiC基陶瓷的断裂韧性[29-30]。此外,由于Ti原子半径与Nb原子半径接近,二者在固溶过程中发生的晶格畸变,也促使PCD结合剂的综合性能提升[31]。
4. 结论
TiC与Nb单质可以按不同比例,MA制备非化学计量比共价化合物(Ti, Nb) C0.5、(Ti, Nb) C0.6、(Ti, Nb) C0.7、(Ti, Nb) C0.8。其中,在同一烧结温度下,TiC与Nb单质摩尔比为5∶5时的固溶程度最好,硬度最高,且在同一摩尔比下,温度越高,TiC与Nb单质固溶程度越好。同时,非化学计量比共价键化合物(Ti, Nb) C0.5综合机械性能最优,其最大硬度为23.0 GPa,最高断裂韧性为7.20 MPa·m1/2 。
-
-
[1] MA F, SHI Z, LIU P, et al. Strengthening effect of in situ TiC particles in Ti matrix composite at temperature range for hot working [J]. Materials Characterization,2016,120:304-310. doi: 10.1016/j.matchar.2016.09.010 [2] MA F, ZHOU J, LIU P, et al. Strengthening effects of TiC particles and microstructure refinement in in situ TiC-reinforced Ti matrix composites [J]. Materials Characterization,2017,127:27-34. doi: 10.1016/j.matchar.2017.02.004 [3] WANG R, GU D, HUANG G, et al. Multilayered gradient titanium-matrix composites fabricated by multi-material laser powder bed fusion using metallized ceramic: Forming characteristics, microstructure evolution, and multifunctional properties [J]. Additive Manufacturing,2023,62:103407. doi: 10.1016/j.addma.2023.103407 [4] XIONG Y, ZHANG F, HUANG Y, et al. Multiple strengthening via high-entropy alloy particle addition in titanium matrix composites fabricated by spark plasma sintering [J]. Materials Science and Engineering A,2022,859:144235. doi: 10.1016/j.msea.2022.144235 [5] YU H L, ZHANG W, Wang H M, et al. In-situ synthesis of TiC/Ti composite coating by high frequency induction cladding [J]. Journal of Alloys and Compounds,2017,701:244-255. doi: 10.1016/j.jallcom.2017.01.084 [6] HEYDARI L, LIETOR P F, CORPAS-IGLESIAS F A, et al. Ti(C, N) and WC-based cermets: A review of synthesis, properties and applications in additive manufacturing [J]. Materials,2021,14(22):6786. doi: 10.3390/ma14226786 [7] HAYAT M D, SINGH H, HE Z, et al. Titanium metal matrix composites: An overview [J]. Composites Part A: Applied Science and Manufacturing,2019,121:418-438. doi: 10.1016/j.compositesa.2019.04.005 [8] HAN C, BABICHEVA R, CHUA J D Q, et al. Microstructure and mechanical properties of (TiB + TiC)/Ti composites fabricated in situ via selective laser melting of Ti and B4C powders [J]. Additive Manufacturing,2020,36:101466. doi: 10.1016/j.addma.2020.101466 [9] JANG J H, LEE C, HEO Y, et al. Stability of (Ti, M)C (M=Nb, V, Mo and W) carbide in steels using first-principles calculations [J]. Acta Materialia,2012,60(1):208-217. doi: 10.1016/j.actamat.2011.09.051 [10] 刘战强. 先进刀具设计技术: 刀具结构, 刀具材料与涂层技术 [J]. 航空制造技术,2006(7):38-42. doi: 10.3969/j.issn.1671-833X.2006.07.002LIU Zhanqiang. Advanced tool design technology: Tool structure, tool material and coating technology [J]. Aeronautical Manufacturing Technology,2006(7):38-42. doi: 10.3969/j.issn.1671-833X.2006.07.002 [11] 李少峰, 刘维良, 彭牛生, 等. 金属陶瓷刀具材料研究进展 [J]. 陶瓷学报,2010,31(1):140-144. doi: 10.3969/j.issn.1000-2278.2010.01.032LI Shaofeng, LIU Weiliang, PENG Niusheng, et al. Research progress of cermet tool materials [J]. Chinese Journal of Ceramics,2010,31(1):140-144. doi: 10.3969/j.issn.1000-2278.2010.01.032 [12] 张宝国, 刘战强, 张丽, 等. 聚晶金刚石 (PCD) 刀具在活塞加工中的应用 [J]. 工具技术,2007,41(9):75-77. doi: 10.3969/j.issn.1000-7008.2007.09.025ZHANG Baoguo, LIU Zhanqiang, ZHANG Li, et al. Apply of PCD cutting tool in machining piston [J]. Tool Technology,2007,41(9):75-77. doi: 10.3969/j.issn.1000-7008.2007.09.025 [13] OH N R, LEE S K, HWANG K C, et al. Characterization of microstructure and tensile fracture behavior in a novel infiltrated TiC–steel composite [J]. Scripta Materialia,2016,112:123-127. doi: 10.1016/j.scriptamat.2015.09.028 [14] 李艳国, 王明阳, 邹芹. 高熵碳/氮/硼化物陶瓷的增韧研究进展 [J]. 燕山大学学报,2024,48(5):377-395. doi: 10.3969/j.issn.1007-791X.2024.05.001LI Yanguo, WANG Mingyang, ZOU Qin. Progress in toughening of high-entropy non-oxide ceramics [J]. Journal of Yanshan University,2024,48(5):377-395. doi: 10.3969/j.issn.1007-791X.2024.05.001 [15] LI X, XIANG J, HU W. {111 twinning structure and interfacial energy in nonstoichiometric TiCx with ordered carbon vacancies [J]. Materials Characterization,2014,90:94-98. doi: 10.1016/j.matchar.2014.01.026 [16] YI D, YU P, HU B, et al. Preparation of nickel-coated titanium carbide particulates and their use in the production of reinforced iron matrix composites [J]. Materials & Design,2013,52:572-579. doi: 10.1016/j.matdes.2013.05.097 [17] 薛建新, 游顺英, 虞建明. 聚晶金刚石 (PCD) 刀具的开发与应用 [J]. 工具技术,2003,37(4):45-47. doi: 10.3969/j.issn.1000-7008.2003.04.016XUE Jianxin, YOU Shunying, YU Jianming. Development and application of polycrystalline diamond (PCD) tool [J]. Tool Technology,2003,37(4):45-47. doi: 10.3969/j.issn.1000-7008.2003.04.016 [18] 冯可桃, 吕健, 阚高辉, 等. 烧结过程氮气分压对(Ti, Nb)(C, N)基金属陶瓷组织和性能的影响 [J]. 稀有金属与硬质合金,2019,49(6):47-54. doi: 10.19990/j.issn.1004-0536.2021.06.047.08FENG Ketao, LV Jian, KAN Gaohui, et al. Effect of nitrogen partial pressure during sintering on microstructure and properties of (Ti, Nb)(C, N) -based cermets [J]. Rare Metals and Cemented Carbide,2019,49(6):47-54. doi: 10.19990/j.issn.1004-0536.2021.06.047.08 [19] KHAN H, YERRAMILLI A S, D'OLIVEIRA A, et al. Experimental methods in chemical engineering: X‐ray diffraction spectroscopy—XRD [J]. Canadian Journal of Chemical Engineering,2020,98(6):1255-1266. doi: 10.1002/cjce.23747 [20] CARDINAL S, MALCHERE A, GARNIER V, et al. Microstructure and mechanical properties of TiC-TiN based cermets for tools application [J]. International Journal of Refractory Metals and Hard Materials,2009,27(3):521-527. doi: 10.1016/j.ijrmhm.2008.10.006 [21] 杨天恩, 熊计, 李体军, 等. 球磨时间对Ti(C0.7, N0.3)晶粒及Ti(C0.7, N0.3)基金属陶瓷组织和性能的影响 [J]. 工程科学与技术,2017,49(1):123-131. doi: 10.15961/j.jsuese.2017.01.016YANG Tianen, XIONG Ji, LI Tijun, et al. Effect of milling time on Ti(C0.7, N0.3) and microstructure and properties of Ti(C0.7, N0.3)-based cermets [J]. Engineering Science and Technology,2017,49(1):123-131. doi: 10.15961/j.jsuese.2017.01.016 [22] 单忠德, 朱福先. 应用 PCD 刀具铣削砂型的刀具磨损机理和预测模型 [J]. 机械工程学报,2018,54(17):124-132. doi: 10.3901/JME.2018.17.124SHAN Zhongde, ZHU Fuxian. Wear mechanism and prediction model of polycrystalline diamond tool in milling sand mould [J]. Chinese Journal of Mechanical Engineering,2018,54(17):124-132. doi: 10.3901/JME.2018.17.124 [23] 葛英飞, 边卫亮, 傅玉灿, 等. PCD 刀具高速铣削 SiCp/Al 复合材料切削温度试验研究 [J]. 工具技术,2011,45(8):31-35. doi: 10.3969/j.issn.1000-7008.2011.08.007GE Yingfei, BIAN Weiliang, FU Yucan, et al. Experimental study on temperature during high speed milling of SiCp/Al composites using PCD tool [J]. Tool & Technology,2011,45(8):31-35. doi: 10.3969/j.issn.1000-7008.2011.08.007 [24] 李来来, 金头男, 符寒光, 等. 激光熔覆原位合成(Ti, Nb)C强化Ni45涂层的微观组织与耐磨性研究 [J]. 热加工工艺,2019,50(8):81-85, 91. doi: 10.14158/j.cnki.1001-3814.20200220LI Lailai, JIN Tounan, FU Hanguang, et al. Study on microstructure and wear resistance of Ni45 coatings strengthened by in-situ synthesis (Ti, Nb)C by laser cladding [J]. Hot Working Technology,2019,50(8):81-85, 91. doi: 10.14158/j.cnki.1001-3814.20200220 [25] 邹芹, 王鹏, 徐江波, 等. 金属基自润滑复合材料固体润滑剂研究进展 [J]. 燕山大学学报,2023,47(5):398-410. doi: 10.3969/j.issn.1007-791X.2023.05.003ZOU Qin, WANG Peng, XU Jiangbo, et al. Research progress of solid lubricants of metal matrix self-lubricating composites [J]. Journal of YanShan University,2023,47(5):398-410. doi: 10.3969/j.issn.1007-791X.2023.05.003 [26] 武美玲, 尹育航, 丁冬海, 等. 自蔓延高温合成法制备金刚石工具材料研究现状 [J]. 材料热处理学报,2023,44(5):1-15. doi: 10.13289/j.issn.1009-6264.2022-0500WU Meiling, YIN Yuhang, DING Donghai, et al. Research status of diamond tool materials prepared by self-propagating high-temperature synthesis [J]. Journal of Materials Heat Treatment,2023,44(5):1-15. doi: 10.13289/j.issn.1009-6264.2022-0500 [27] 邹芹, 李壮, 李艳国, 等. 中熵碳化物陶瓷TiC0.4/VC/NbC结合的WC基硬质合金合成与性能 [J]. 中国有色金属学报,2023,33(6):1914-1923. doi: 10.11817/j.ysxb.1004.0609.2022-43353ZOU Qin, LI Zhuang, LI Yanguo, et al. Synthesis and properties of WC-based cemented carbide combined with TiC0.4/VC/NbC medium entropy carbide ceramics [J]. The Chinses Journal of Nonferrous Metals,2023,33(6):1914-1923. doi: 10.11817/j.ysxb.1004.0609.2022-43353 [28] ZHANG Z, GENG C, KE Y, et al. Processing and mechanical properties of nonstoichiometric TiC (0.3≤ x ≤0.5) [J]. Ceramics International,2018,44(15):18996-19001. doi: 10.1016/j.ceramint.2018.07.141 [29] 邝宏有, 戴炳蔚, 吴育藩. WC-11%(Ti, W)(Ta, Nb)C-11%Co合金制取过程中碳量和球磨时间的优化 [J]. 硬质合金,2012,39(2):111-117. doi: 10.3969/j.issn.1003-7292.2012.02.009KUANG Hongyou, DAI Bingwei, WU Yufan. Optimization of carbon content and ball milling time in Preparation of WC-11%(Ti, W)(Ta, Nb)C-11%Co alloy [J]. Journal of Cemented Carbide,2012,39(2):111-117. doi: 10.3969/j.issn.1003-7292.2012.02.009 [30] 项忠楠, 李战江, 黄水根, 等. 烧结温度对(Ti,W,Mo,Nb)(C,N)-(Co,Ni)金属陶瓷组织结构和性能的影响 [J]. 稀有金属材料与工程,2021,50(4):1179-1186. doi: 10.12442/j.issn.1002-185X.20200228XIANG Zhongnan, LI Zhanjiang, HUANG Shuigen, et al. Effect of sintering temperature on microstructure and properties of (Ti, W, Mo, Nb)(C, N)-(Co, Ni) cermet [J]. Rare Metal Materials and Engineering,2021,50(4):1179-1186. doi: 10.12442/j.issn.1002-185X.20200228 [31] 许育东, 刘宁, 石敏, 等. (Ti, Mo, W, Ta, V, Nb)(C, N) 多元陶瓷相的价电子结构 [J]. 硅酸盐通报,2005,24(2):8-12. doi: 10.3969/j.issn.1001-1625.2005.02.002XU Yudong, LIU Ning, SHI Min, et al. Valence electron structure (VES) of (Ti, Mo, W, Ta, V, Nb)(C, N) ceramic multiphase in cermets [J]. Bulletin of Silicate,2005,24(2):8-12. doi: 10.3969/j.issn.1001-1625.2005.02.002 -