Effect of CNTs on properties of PcBN composites with mixed particle size
-
摘要: 为提高高温高压制备的聚晶立方氮化硼(PcBN)复合材料的性能,以颗粒尺寸分别为0~0.5 μm和0.5~1.0 μm的混合粒径立方氮化硼(cBN)为原材料,Al-Ti-Al2O3为结合剂,加入不同质量分数的碳纳米管,在高温高压条件下烧结制备PcBN复合材料,研究碳纳米管质量分数对PcBN复合材料结构和性能的影响。结果表明:添加碳纳米管后,PcBN和碳纳米管间没有发生化学反应,碳纳米管以增强体的形式存在于复合材料内部;复合材料较致密,碳纳米管的添加使PcBN的相对密度先增大后减小。当碳纳米管添加质量分数为1.5%时,PcBN的相对密度有最大值97.9%,同时 PcBN有最大的显微硬度和断裂韧性,分别为3892 HV和6.82 MPa·m1/2;当碳纳米管的添加质量分数为1.0%时,PcBN有最大的抗弯强度和磨耗比,分别为584 MPa和6873。碳纳米管拔出和桥连作用提高了PcBN复合材料的力学性能。Abstract: To improve the performance of PcBN composites prepared under high temperature and high pressure, mixed cBN particle sizes ranging from 0 to 0.5 μm and 0.5 to 1.0 μm were used as the raw material, Al-Ti-Al2O3 was used as the binder and the carbon nanotubes with different contents were added. The PcBN composites were prepared by sintering under high temperature and high pressure conditions. The effect of carbon nanotube content on the structure and properties of PcBN composites was investigated. The results show that there is no chemical reaction between PcBN and carbon nanotubes after the addition of carbon nanotubes, and the carbon nanotubes exist in the form of reinforcement inside the composite. The composite material is relatively dense, and the relative density of PcBN increases first and then decreases with the addition of carbon nanotubes. When the mass fraction of carbon nanotubes added is 1.5%, the relative density of PcBN reaches its maximum value of 97.9%, while PcBN has the maximum microhardness and fracture toughness of 3 892 HV and 6.82 MPa·m1/2, respectively. When the mass fraction of carbon nanotubes added is 1.0%, PcBN has the maximum bending strength and wear ratio, which are 584 MPa and 6 873 MPa, respectively. The pull-out and bridging effects of carbon nanotubes improve the mechanical properties of PcBN composites.
-
立方氮化硼(Cubic boron nitride,cBN)是硬度仅次于金刚石的材料,与金刚石相比,cBN在化学和热稳定性方面具有独特的性能[1-4]。聚晶立方氮化硼(polycrystalline cubic boron nitride,PcBN)是由cBN微粉和结合剂混合后经高温高压(HTHP)烧结而成的聚晶复合材料,与金刚石超硬刀具相比,PcBN刀具不与铁系材料发生反应,在加工应用中享有独特优势,被广泛应用于铁系黑色金属材料的加工(如高速钢、轴承钢、铸铁等)和硬脆材料的加工[5-11]。
研究发现:cBN粒度配比对合成的PcBN性能影响较大,cBN混合粒径合成的PcBN性能要优于单一粒径的,cBN粒度分布范围宽的PcBN性能又优于粒度范围窄的;在高温高压条件下,cBN颗粒发生破碎、重组,颗粒之间由点-点的接触方式转变到面-面的接触方式;随压力的增大,PcBN材料的密度和耐磨性都有一定程度的提高[12-14]。
目前,大量研究人员通过引入第二相来提高PcBN的性能,如引入超硬纳米颗粒(纳米金刚石)、晶须和碳纳米管(carbon nanotubes,CNTs)等[14-19]。由于金刚石的硬度和耐磨性等力学性能要优于cBN的,在PcBN中引入纳米金刚石,可得到性能更为优异的PcBN;且纳米金刚石作为增强相,弥散分布在PcBN基体中,可以对PcBN的晶界进行强化[15]。当PcBN受到外力作用时,金刚石颗粒能使PcBN内部裂纹发生偏转,提高PcBN的综合性能,且细粒度的金刚石对 TiN/Al/Co/cBN复合材料的弥散强化作用更显著,金刚石的加入能使其抗弯强度和磨耗比取得最大值,与未添加时的相比分别提高了37.6%和 38.0%[14]。晶须和纳米颗粒的加入能使复合材料通过内裂纹偏转、晶须桥联和晶须拔出机制协同强韧化,添加氮化硅晶须和氮化硅颗粒的Si3N4/Al2O3/Al/cBN 复合材料试样的抗弯强度较未添加时的提高了36.4%,并得到最大的断裂韧性[14,16,18]。相较于纯cBN复合材料,cBN/CNTs复合材料的断裂韧性和弯曲强度分别提高了28.9%和26.3%;加入碳纳米管能使氮化硼晶粒细化,使氮化硼/CNTs复合材料的耐磨性提高了43.23%;同时,弯曲强度和断裂韧性的提高归因于CNTs的拔出和桥接[17,19]作用。但到目前为止,对混合粒径的PcBN复合材料性能的研究较少。
为此,采用2种cBN的粉体组成混合粒径的cBN原材料,以 Al-Ti-Al2O3为结合剂,添加不同质量分数的碳纳米管,在高温高压下制备PcBN复合材料,探究碳纳米管质量分数对混合粒径PcBN结构和性能的影响。
1. 实验材料与方法
1.1 实验原料与样品烧结
实验用cBN粉体为中南杰特的CBNM-W型cBN,其颗粒粒度分布均匀,形貌不规则、表面粗糙,颜色为黑灰色,基本晶粒尺寸分别为0~0.5 μm和0.5~1.0 μm,纯度都为99.9%,二者的混合比例(质量分数)为67.8%∶32.2%。Al2O3粉体的基本晶粒尺寸为30 nm,纯度为99.0%;Al粉基本晶粒尺寸为1~2 µm,纯度为99.0%;Ti粉体基本晶粒尺寸为60 nm,纯度为99.0%。这3种材料均从上海阿拉丁生化科技股份有限公司购买。Al-Ti-Al2O3结合剂加入的质量分数为30.0%,其Al、Ti、Al2O3的质量分数分别为6.0%、4.0%和20.0%。复壁碳纳米管内径为5~10 nm,外径为10~20 nm,长度为0.5~2.0 µm,碳纳米管添加的质量分数分别为0.5%、1.0%、1.5%和2.0%,也从上海阿拉丁生化科技股份有限公司购买。具体的实验配方见表1。
表 1 实验配方Table 1. Experimental formula编号 cBN质量分数
ω1 / %结合剂质量分数
ω2 / %CNTs质量分数
ω3 / %1 70.0 30.0 0 2 69.5 30.0 0.5 3 69.0 30.0 1.0 4 68.5 30.0 1.5 5 68.0 30.0 2.0 在六面顶压机上采取高温高压法烧结制备PcBN样品,采用先升压再升温、先降温再降压的生产工艺。将组装好的标准试样块放入六面顶压机中高温高压烧结制备PcBN复合材料,研磨、抛光后对其进行性能检测。高温高压烧结的具体工艺参数:烧结压力为5.5 GPa,烧结温度为1 350 ℃,保温时间为10 min。PcBN复合材料的高温高压烧结制备流程如图1所示。
1.2 样品性能检测
使用美国FEI公司的FEI INSPECT F50型扫描电子显微镜(SEM)对烧结的PcBN样品断面的微观形貌进行观测,并观察cBN与结合剂的结合状态;使用A8 ADVANCE型X射线衍射仪(XRD,CuKα,λ = 0.154 06 nm, 德国)对PcBN样品的物相进行分析,确定其物相组成;采用阿基米德原理测量样品密度,此值与理论密度的比值为样品的相对密度;采用日本 Future-Tech 公司的FM-ARS900 半自动显微测量系统在30 N压力下保压15 s测定样品的显微硬度,并根据其裂纹尺寸计算断裂韧性;使用国产WDW-50电子万能试验机测定样品的抗弯强度;使用国产MA6025型万能工具磨床对磨绿SiC砂轮测定样品磨耗比。测试用绿SiC砂轮基本指标:GC粒度代号为F80,砂轮直径为100 mm、孔径为16 mm、厚度为20 mm,砂轮硬度为 3.1。测试时工作台速度为19~21 mm/s,砂轮线速度为25 m/s,砂轮磨耗量≥25 g,试样磨耗量≥0.20 mg。
2. 实验结果与讨论
2.1 PcBN的物相组成
图2是添加质量分数分别为0.5%、1.0%、1.5%、2.0%的碳纳米管时制备的混合粒径PcBN复合材料的XRD图。在图2中可以看到:添加碳纳米管的4个样品的XRD图谱没有明显变化,复合材料内部以cBN、Al2O3、AlN、TiN、TiB2物相为主以及有少量的Al3Ti相。这说明在高温高压烧结过程中,碳纳米管并没有与结合剂或者cBN发生反应,仅仅以增强体的形式存在于复合材料内部。
2.2 PcBN的微观形貌
图3所示是碳纳米管质量分数分别为0.5%、1.0%、1.5%和2.0%时样品的断面微观形貌。PcBN复合材料内部整体结构致密,无明显气孔,结合剂与cBN反应充分、结合牢固,微量熔融态的Al3Ti合金相提升了烧结体内部的致密化程度。在图3a中可以看到有少量的微裂缝,可能是结合剂材料在降温中产生收缩,而结合剂与cBN收缩比例不同导致的微裂缝现象。随着碳纳米管添加量的增加(图3b~3d),烧结体的微裂缝逐渐消失,碳纳米管的存在有效阻止了裂纹扩展。碳纳米管具有较好的吸附力,以增强体的形式存在于基体中。
2.3 PcBN的相对密度和抗弯强度
图4所示为高温高压下添加不同质量分数碳纳米管时制备的混合粒径PcBN的相对密度和抗弯强度的变化趋势。图4中:添加碳纳米管的PcBN的相对密度均大于未加入碳纳米管的。随碳纳米管质量分数的增加,PcBN的相对密度呈现先增大后减小的趋势,但整体变化不大,且相对密度都>95.0%。增加碳纳米管的质量分数会填充复合材料内部的微小孔隙,提高复合材料的相对密度;但过多地加入碳纳米管也会使碳纳米管发生团聚,进而在复合材料内部产生缺陷,降低PcBN的相对密度。PcBN的相对密度在碳纳米管质量分数为1.5%时达到最大值97.9%。与此同时,碳纳米管的加入使PcBN的抗弯强度呈先上升后下降的趋势,当碳纳米管添加质量分数为1.0%时PcBN的抗弯强度达到最大值584 MPa。碳纳米管的加入使PcBN材料在断裂时,与钢筋混凝土中的钢筋起相同作用,阻止其裂纹扩展,提高了PcBN的抗弯强度;而PcBN抗弯强度降低是其晶界处玻璃相的软化和碳纳米管的团聚所致[16-17,20]。
2.4 PcBN的显微硬度和断裂韧性
图5所示为添加不同质量分数碳纳米管时制备的混合粒径PcBN的显微硬度和断裂韧性。添加碳纳米管后,PcBN的显微硬度都高于未添加碳纳米管时的(其显微硬度为3287 HV)。随碳纳米管质量分数的增加硬度增加,当碳纳米管添加质量分数1.5%时,硬度达到最大值3892 HV,提高了18.4%;然后随碳纳米管质量分数的继续增加,硬度值下降。其原因可能是碳纳米管具有与金刚石相同的硬度,所以加入碳纳米管硬度增加;但加入量过大时,密度降低,故硬度又下降。加入碳纳米管后,PcBN断裂韧性的变化趋势与显微硬度的变化相同,未添加碳纳米管时,PcBN的断裂韧性为6.12 MPa·m1/2,随碳纳米管质量分数增加,PcBN的断裂韧性先增大后减小,在碳纳米管添加的质量分数为1.5%时达到最大值6.82 MPa·m1/2,提高了11.4%。其原因可能有以下2点:(1)碳纳米管具有高强度、高刚度,与cBN基体紧密结合能够承受更多的荷载,减少裂纹扩展,适当添加碳纳米管可使PcBN性能提升;(2)过多地添加碳纳米管后,CNTs的拔出消耗了裂纹偏转和扩展的能量,导致局部应力和应变减少[21-22],进而使PcBN性能下降。
2.5 PcBN的磨耗比
图6所示为添加不同质量分数碳纳米管制备的混合粒径PcBN的磨耗比。PcBN的磨耗比能反映其耐磨性,且能体现cBN与结合剂的结合状态。由图6可知:随碳纳米管质量分数的增加,磨耗比的变化趋势为先增加后减少再增加。未加入碳纳米管时,磨耗比为6223;随碳纳米管的加入,磨耗比增加,当碳纳米管质量分数为1.0%时,PcBN具有最大的磨耗比值6 873,提高了10.4%;但当碳纳米管质量分数从1.0%增加到1.5%时,PcBN的磨耗比急剧下降,然后当碳纳米管质量分数为2.0%时,磨耗比又增加了,其值为6411。总的来说,加入碳纳米管增加了PCBN的磨耗比,原因可能是加入碳纳米管提高了烧结体内部的致密化程度,同时其强度和硬度也有不同程度的增加。
3. 结论
用高温高压烧结法制备了添加碳纳米管的Al-Ti-Al2O3为结合剂的PcBN样品。加入碳纳米管后,PcBN复合材料内部的物相没有发生变化,碳纳米管以增强体的形式存在于复合材料内部;其断面的微观形貌表明复合材料整体结构致密,碳纳米管的拔出和桥连作用提高了PcBN的机械性能。碳纳米管的添加使PcBN的相对密度先增大后减小,在添加质量分数为1.5%时有最大值97.9%,且此时PcBN有最大的显微硬度和断裂韧性,分别为3892 HV和6.82 MPa·m1/2;当碳纳米管的添加质量分数为1.0%时,PcBN有最大的抗弯强度和磨耗比,分别为584 MPa和6873。
-
表 1 实验配方
Table 1. Experimental formula
编号 cBN质量分数
ω1 / %结合剂质量分数
ω2 / %CNTs质量分数
ω3 / %1 70.0 30.0 0 2 69.5 30.0 0.5 3 69.0 30.0 1.0 4 68.5 30.0 1.5 5 68.0 30.0 2.0 -
[1] BADZIAN A R. Cubic boron nitride-diamond mixed crystals [J]. Materials Research Bulletin,1981(16):1385-1393. doi: 10.1016/0025-5408(81)90057-X [2] MONTEIRO S N, SKURY A L D, DE AZEVEDO M G, et al. Cubic boron nitride competing with diamond as a superhard engineering material: An overview [J]. Journal of Materials Research and Technology,2013,2(1):68-74. doi: 10.1016/j.jmrt.2013.03.004 [3] COOK M W, BOSSOM P K. Trends and recent developments in the material manufacture and cutting tool application of polycrystalline diamond and polycrystalline cubic boron nitride [J]. International Journal of Refractory Metals & Hard Materials,2000,18(2/3):147-152. doi: 10.1016/S0263-4368(00)00015-9 [4] BADZIAN A, BADZIAN T. Recent developments in hard materials [J]. International Journal of Refractory Metals & Hard Materials,1997(15):3-12. doi: 10.1016/S0263-4368(96)00047-9 [5] KISHAWY H A, ELBESTAWI M A. Tool wear and surface integrity during high-speed turning of hardened steel with polycrystalline cubic boron nitride tools [J]. Proceedings of the Institution of Mechanical Engineers Part B: Journal of Engineering Manufacture,2001,215(6):755-767. doi: 10.1243/0954405011518700 [6] GUTNICHENKO O, BUSHLYA V, ZHOU J, et al. Tool wear and machining dynamics when turning high chromium white cast iron with PcBN tools [J]. Wear,2017(390/391):253-269. doi: 10.1016/j.wear.2017.08.005 [7] SAKETI S, SVEEN S, GUNNARSSON S, et al. Wear of a high cBN content PcBN cutting tool during hard milling of powder metallurgy cold work tool steels [J]. Wear,2015(332):752-761. doi: 10.1016/j.wear.2015.01.073 [8] MATRAS A, ZEBALA W, KOWALCZYK R. Precision milling of hardened steel with cBN tools [J]. Precision Machining,2014(581):182-187. doi: 10.4028/www.scientific.net/KEM.581.182 [9] SHALABY M A, ELHAKIM M A, ABDELHAMEED M, et al. Wear mechanisms of several cutting tool materials in hard turning of high carbon-chromium tool steel [J]. Tribology International,2014(70):148-154. doi: 10.1016/j.triboint.2013.10.011 [10] 隋建波, 王成勇, 梁清延. PCBN刀具切削蠕墨铸铁的刀具磨损机理模型 [J]. 机电工程技术,2020,49(12):38-41. doi: 10.3969/j.issn.1009-9492.2020.12.012SUI Jianbo, WANG Chengyong, LIANG Qingyan. Modeling of tool wear for compacted graphite iron machining with PCBN tool [J]. Mechanical & Electrical Engineering Technology,2020,49(12):38-41. doi: 10.3969/j.issn.1009-9492.2020.12.012 [11] ADILSON J O, MARCOS V A O, ANDERSON C A M, et al. Effects of different tool material grades and lubri-cooling techniques in milling of high-Cr white cast iron [J]. International Journal of Advanced Manufacturing Technology,2020(110):875-886. doi: 10.1007/s00170-020-05910-w [12] 范文捷, 刘芳, 董艳丽. CBN粒度及组装方式对PCBN性能影响的研究 [J]. 金刚石与磨料磨具工程,2009(2):67-69, 73. doi: 10.13394/j.cnki.jgszz.2009.02.017FAN Wenjie, LIU Fang, DONG Yanli. Effect of grain size of CBN and assembly mode on characteristics of PCBN [J]. Diamond & Abrasives Engineering,2009(2):67-69, 73. doi: 10.13394/j.cnki.jgszz.2009.02.017 [13] DENG W L, DENG F M, HAO C, et al. Self-bonding mechanism of pure polycrystalline cubic boron nitride under high pressure and temperature [J]. International Journal of Refractory Metals & Hard Materials,2020(86):1-7. doi: 10.1016/j.ijrmhm.2019.105061 [14] 纪焕丽. 立方氮化硼复合材料高温高压制备及性能研究 [D]. 天津: 天津大学, 2020.JI Huanli. Preparation and performance of cubic boron nitride composite by high temperature high pressure sintering [D]. Tianjin: Tianjin University, 2020. [15] MO P C, CHEN J R, ZHANG Z, et al. The effect of cBN volume fraction on the performance of PCBN composite [J]. International Journal of Refractory Metals and Hard Materials,2021(100):105643. doi: 10.1016/j.ijrmhm.2021.105643 [16] WANG S Y, LI Z H, ZHU Y M, et al. Enhanced mechanical properties of cBN-Al-Si3N4 composites by introducing diamond [J]. Diamond and Related Materials,2022,121(5):108808. doi: 10.1016/j.diamond.2021.108808 [17] SUN K, ZHU Y M, LI Z H, et al. Fabrication of composites with excellent mechanical properties based on cubic boron nitride reinforced with carbon nanotubes [J]. Ceramics International,2019,45(11):14287-14290. doi: 10.1016/j.ceramint.2019.04.138 [18] JIANG Z L, LIANG Y X, SUN K, et al. Effects of SiC whiskers on performances of cBN-SiCp-Al composites sintered by HTHP [J]. Materials Chemistry and Physics,2020,253(6):123450. doi: 10.1016/j.matchemphys.2020.123450 [19] KONG F, YI M D, XIAO G C, et al. Mechanical property and cutting performance of CNTs reinforced cBN cutting tools by spark plasma sintering [J]. Journal of Manufacturing Processes,2022(84):1389-1403. doi: 10.1016/j.jmapro.2022.11.003 [20] TAKAFUMI K, RAK-JOO S, TOHRU S, et al. High-temperature properties of a silicon nitride/boron nitride nanocomposite [J]. Journal of Materials Research,2004,19(5):7-13. doi: 10.1557/JMR.2004.0192 [21] ZHAN G D, KUNTZ J D, WAN J, et al. Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites [J]. Nature Materials,2003,2(1):38-42. doi: 10.1038/nmat793 [22] WEI L W, JIAN Q B, KANG N S, et al. Fabrication of alumina ceramic reinforced with boron nitride nanotubes with improved mechanical properties [J]. Journal of the American Ceramic Society,2011,94(11):5-12. doi: 10.1111/j.1551-2916.2011.04821.x -