Simulation and experimental study of single-crystal silicon laser assisted cutting based on SPH method
-
摘要: 单晶硅加工过程中很容易产生细微裂纹,从而影响表面加工质量。激光辅助加工(laser-assisted machining, LAM)可以软化代加工区域,有效减小切削力,延长刀具寿命,提高表面加工质量。建立热力耦合的SPH模型,来模拟单晶硅激光辅助车削过程,在不同温度条件下,探究裂纹扩展损伤和切削应力以及转速和切深对表面粗糙度的影响,并通过LAM试验,验证仿真结果的准确性。结果表明:提高温度有利于单晶硅的塑性切削,随着切削域温度的增加刀具应力逐渐减小,300 ℃时的刀具应力较常温下降低了约50%,表面加工质量有明显提升;且600 ℃时的切屑为塑性流动锯齿线条,其塑性大幅度提高。切削时应选择较小的切削深度,低于4 500 r/min的转速,单晶硅表面粗糙度Sa可在1.000 nm以下。Abstract: Fine cracks are easy to occur in the processing of monocrystalline silicon, which affects the surface processing quality. Laser assisted machining (LAM) can soften the substitute machining area, effectively reduce the cutting force, extend the tool life and improve the surface quality. In this paper, a thermo mechanical coupled smooth particle model is established to simulate the laser assisted turning process of single crystal silicon. Under different temperature conditions, crack propagation damage and cutting stress are explored. The influence of speed and cutting depth on surface roughness. Finally, the accuracy of simulation results is verified by laser assisted cutting experiments. The results show that increasing the temperature is beneficial to the plastic cutting of monocrystalline silicon. With the increase of the cutting zone temperature, the tool stress gradually decreases. The tool stress at 300 ℃ is about 50% lower than that at room temperature, and the surface processing quality is significantly improved. At 600 ℃, the chip is a plastic flow sawtooth line, and the plasticity is greatly improved. During cutting, a smaller cutting depth shall be selected, the rotating speed shall be lower than 4 500 r/min, and the surface roughness Sa of monocrystalline silicon can be less than 1 nm.
-
Key words:
- SPH /
- monocrystalline silicon /
- ultra-precision machining /
- laser assisted
-
表 1 金刚石刀具部分参数
Table 1. Some parameters of diamond tools
属性 取值 密度 ρ / ( kg·m−3) 3 500 弹性模量 E / GPa 850 泊松比 v 0.1 比热 c / ( J·kg−1·℃) 471.5 熔化温度 θ / ℃ 4 027 热传导系数 λ / ( W·m−1·℃) 1 500 热膨胀系数 ε / ( μm · m−1·℃) 2.0 表 2 J-C 模型参数
Table 2. J-C model parameters
参数 A / MPa B / MPa m n C 数值 300 1597 1.163 0.45 0.004 参数 D1 D2 D3 D4 D5 数值 0.053 0.9 −1.5 0.01 0.6 -
[1] 吴明明, 周兆忠, 巫少龙. 单晶硅片的制造技术 [J]. 新技术工艺,2004(5):7-10.WU Mingming, ZHOU Zhaozhon, WU Shaolong. Manufacturing technique of monocrystal silicon wafers [J]. New Technology,2004(5):7-10. [2] 朱惠臣, 孙晓光, 杜黎明. 我国集成电路专用材料发展状况分析 [J]. 工艺与制造,2021,38(2):22-25.ZHU Huichen, SUN Xiaoguang, DU Liming. Analysis on development of IC special materials in China [J]. Process and Fabrication,2021,38(2):22-25. [3] GUO X G, WEI Y G, JIN Z G, et al. A numerical model for optical glass cutting based on SPH method [J]. International Journal of Advanced Manufacturing Technology, 2013, 68(5/6/7/8): 1277–1283 [4] MADAJ M, PÍŠKA M. On the SPH orthogonal cutting simulation of A2024-T351 alloy [J]. Procedia CIRP , 2013, 8: 152–157. DOI: 10.1016/j.procir.2013.06.081 [5] 朱帮迎. 单晶硅精密切削仿真与实验研究 [D]. 哈尔滨: 哈尔滨工业大学, 2015.ZHU Bangying. Simulation and experiment of ultra-precision cutting single crystal silicon [D]. Harbin: Harbin Institute of Technology, 2015. [6] MOHAMMADI H, RAVINDRA D, KODE S K, et al. Experimental work on micro laser-assisted diamond turning of silicon(111) [J]. Journal of Manufacturing Processes,2015,19(8):125-128. doi: 10.1016/j.jmapro.2015.06.007 [7] GUO Y J, YANG X J, KE J Y, et al. Experimental investigations on the laser-assisted machining of single crystal Si for optimal machining [J]. Optics & Laser Technology,2021,141:1-9. doi: 10.1016/j.optlastec.2021.107113 [8] HE W B, LIU C L, XU G Q, et al. Effect of temperature on ductile-to-brittle transition in diamond cutting of silicon[J]. The International Journal of Advanced Manufacturing Technology, 2021, 116: 3447–3462 [9] KE J Y, CHEN X, LIU C L, et al. Enhancing the ductile machinability of single-crystal silicon by laser-assisted diamond cutting [J]. The International Journal of Advanced Manufacturing Technology,2021,118:9-10. doi: 10.1007/s00170-021-08132-w [10] UMBRELLO D, M’SAOUBI R, OUTEIRO J C. The influence of Johnson-Cook material constants on finite element simulation of machining of AISI 316L steel [J]. International Journal of Advanced Manufacturing Technology,2007,47(3):462-470. doi: 10.1016/j.ijmachtools.2006.06.006 [11] LIU C, SHI Y. Modelling and simulation of laser assisted milling process of titanium alloy [J]. Procedia CIRP, 2014, 24: 134–139 [12] 吴雪峰. 激光加热辅助切削氮化硅陶瓷技术的基础研究 [D]. 哈尔滨: 哈尔滨工业大学, 2011: 15-17.WU Xuefeng. Basic research on laser assisted machining of silicon nitride ceramics [D]. Harbin: Harbin Institute of Technology, 2011: 15-17. [13] NAM J, KIM T, CHO S W. A numerical cutting model for brittle materials using smooth particle hydrodynamics [J]. The International Journal of Advanced Manufacturing Technology, 2016, 82: 133–141 -