Process parameters optimization of zirconia ceramics polishing with magnetic compound fluid slurry
-
摘要: 为提高氧化锆陶瓷工件的表面质量,采用磁性复合流体(由包含纳米级铁磁颗粒的磁流体与包含微米级羰基铁颗粒的磁流变液混合而成)对氧化锆陶瓷进行抛光,以达到降低材料表面粗糙度和减少表面与亚表面损伤的目的。利用田口方法设计3因素3水平正交试验,着重分析磁铁转速、加工间隙和抛光液磨粒粒径对表面粗糙度和材料去除率的影响规律,并采用方差分析法分析各因素对2个评价指标的影响权重。可达到最低表面粗糙度的工艺参数组合为:磁铁转速,300 r/min;加工间隙,0.5 mm;磨粒粒径,1.25 μm。可达到最高材料去除率的工艺参数组合为:磁铁转速,400 r/min;加工间隙,0.5 mm;磨粒粒径,2.00 μm。根据优化的工艺参数进行抛光,表面粗糙度最低可达4.5 nm,材料去除率最高可达0.117 μm/min,优化效果显著。利用遗传算法优化BP神经网络建立抛光预测模型,预测误差为3.948 4%。Abstract: In order to improve the surface quality of zirconia ceramic workpieces, the magnetic compound fluid polishing tool were utilized. This was done to lessen the material's surface roughness, minimize surface and subsurface damage. With a focus on the effects of magnet speed, processing gap, and abrasive particle size in the polishing fluid on surface roughness and material removal rate, a 3-factor, 3-level orthogonal test was created using Taguchi's method. The weights of each factor on the two evaluation indices were then analyzed using ANOVA. The best process parameter combination for surface roughness was 300 r/min for the magnet speed, 0.5 mm for the processing gap, and 1.25 μm for the abrasive particle size; the best process parameter combination for material removal rate was 400 r/min for the magnet speed, 0.5 mm for the processing gap, and 2 μm for the abrasive particle size. With these processing parameters, the surface roughness can reach up to 4.5 nm, and the material removal rate can reach up to 0.117 μm/min. The optimization effect is significant. The polishing prediction model was developed using a BP neural network that has been genetic algorithm optimized. The prediction error was 3.948 4%.
-
表 1 正交试验的因素和水平
Table 1. Factors and levels of orthogonal experiment
水平 因素 磁铁转速
nc / (r·min−1)
A加工间隙
h / mm
B磨粒粒径
as / μm
C1 200 0.50 0.50 2 300 0.75 1.25 3 400 1.00 2.00 表 2 试验正交表及试验结果
Table 2. Combinations of orthogonal experimental parameters and experimental results
试验序号 因素 结果 A B C 粗糙度平均值 Ra / nm (S·N−1)r / dB 材料去除率 dmrr / (μm·min−1) (S·N−1)d / dB 1 200 0.50 0.50 9.90 −19.92 0.092 −20.73 2 200 0.75 1.25 11.37 −21.11 0.100 −20.09 3 200 1.00 2.00 13.67 −22.71 0.093 −20.60 4 300 0.50 1.25 4.50 −13.08 0.114 −18.87 5 300 0.75 2.00 9.43 −19.50 0.113 −18.94 6 300 1.00 0.50 13.03 −22.31 0.091 −20.82 7 400 0.50 2.00 8.50 −18.59 0.117 −18.64 8 400 0.75 0.50 8.27 −18.35 0.107 −19.41 9 400 1.00 1.25 8.63 −18.73 0.096 −20.29 表 3 每个因素的每个水平下的平均值
Table 3. Mean values at each level for each factor
因素 因素取值 表面粗糙度
Ra / nm材料去除率
dmrr / (μm·min−1)磁铁转速
nw / (r·min−1)200 11.64 0.095 11 300 8.99 0.106 00 400 8.47 0.106 90 加工间隙
h / mm0.50 7.63 0.107 67 0.75 9.69 0.106 67 1.00 11.78 0.093 68 磨粒粒径
as/ μm 0.50 10.40 0.096 67 1.25 8.17 0.103 57 2.00 10.53 0.107 78 -
[1] ZHANG X, WU X, SHI J. Additive manufacturing of zirconia ceramics: A state-of-the-art review [J]. Journal of Materials Research and Technology,2020,9(4):9029-9048. doi: 10.1016/j.jmrt.2020.05.131 [2] OLHERO S M, TORRES P, MESQUITA-GUIMARAES J, et al. Conventional versus additive manufacturing in the structural performance of dense alumina-zirconia ceramics: 20 years of research, challenges and future perspectives [J]. Journal of Manufacturing Processes,2022,77:838-879. doi: 10.1016/j.jmapro.2022.02.041 [3] 曾尽娣, 宋晶晶, 张宇航, 等. 不同抛光处理全氧化锆修复体的表面粗糙度和细菌黏附 [J]. 中国组织工程研究,2023,27(21):3320-3324. doi: 10.12307/2023.174ZENG Jindi, SONG Jingjing, ZHANG Yuhang, et al. Surface roughness and bacteria adhesion of full zirconia restoration after different polishing treatment [J]. Chinese Journal of Tissue Engineering Research,2023,27(21):3320-3324. doi: 10.12307/2023.174 [4] KLINGE B, MEYLE J. Soft-tissue integration of implants: Consensus report of working group 2 [J]. Clinical Oral Implants Research,2010,17(S2):93-96. [5] LI M, LYU B, YUAN J, et al. Evolution and equivalent control law of surface roughness in shear-thickening polishing [J]. International Journal of Machine Tools and Manufacture,2016,108:113-126. doi: 10.1016/j.ijmachtools.2016.06.007 [6] LIU W, TANG D, GU H, et al. Experimental study on the mechanism of strain rate on grinding damage of zirconia ceramics [J]. Ceramics International,2022,48(15):21648-21655. doi: 10.1016/j.ceramint.2022.04.142 [7] ZHANG G, WANG Z, CHEN W, et al. Single-point grinding of alumina and zirconia ceramics under two-dimensional compressive prestress [J]. International Journal of Precision Engineering and Manufacturing,2020,21:1-9. doi: 10.1007/s12541-019-00232-8 [8] KIZAKI T, SUGITA N, MITSUISHI M, et al. Experimental analysis of the machinability in the thermally assisted milling process of zirconia ceramics [J]. Precision Engineering,2016,45(1):176-186. [9] 孙纪奎, 梅子彧, 楼雨欣, 等. 三维打印和切削氧化锆修复体的成型性能研究进展 [J]. 口腔颌面修复学杂志,2022,23(1):63-69.SUN Jikui, MEI Ziyu, LOU Yuxin, et al. Research progress of three-dimensional printing and cutting zirconia restorations [J]. Chinese Journal of Prosthodontics,2022,23(1):63-69. [10] ZUCUNI C P, GUILARDI L F, RIPPE M P, et al. Fatigue strength of yttria-stabilized zirconia polycrystals: Effects of grinding, polishing, glazing, and heat treatment [J]. Journal of the Mechanical Behavior of Biomedical Materials,2017,75:512-520. doi: 10.1016/j.jmbbm.2017.06.016 [11] CARAVACA C F, FLAMANT Q, ANGLADA M, et al. Impact of sandblasting on the mechanical properties and aging resistance of alumina and zirconia based ceramics [J]. Journal of the European Ceramic Society,2018,38(3):915-925. [12] SEO S H, KIM J E, NAM N E, et al. Effect of air abrasion, acid etching, and aging on the shear bond strength with resin cement to 3Y-TZP zirconia [J]. Journal of the Mechanical Behavior of Biomedical Materials,2022,134:105348. doi: 10.1016/j.jmbbm.2022.105348 [13] MAY M M, FRAGA S, MAY L G. Effect of milling, fitting adjustments, and hydrofluoric acid etching on the strength and roughness of CAD-CAM glass- ceramics: A systematic review and meta-analysis [J]. The Journal of Prosthetic Dentistry,2022,128(6):1190-1200. doi: 10.1016/j.prosdent.2021.02.031 [14] PINTO P, CARVALHO A, SILVA F S, et al. Comparative toothbrush abrasion resistance and surface analysis of different dental restorative materials [J]. Tribology International,2022,175:107799. doi: 10.1016/j.triboint.2022.107799 [15] XU L, LEI H, DING Z, et al. Preparation of the rod-shaped SiO2@C abrasive and effects of its microstructure on the polishing of zirconia ceramics [J]. Powder Technology,2022,395:338-347. doi: 10.1016/j.powtec.2021.09.070 [16] XU L, PARK K, LEI H. Polishing of zirconia ceramics by chemically-induced micro-nano bubbles [J]. Ceramics International,2022,12:48. [17] MING Y, HUANG X, ZHOU D, et al. A novel Non-Newtonian fluid polishing technique for zirconia ceramics based on the weak magnetorheological strengthening thickening effect [J]. Ceramics International,2022,48(5):7192-7203. doi: 10.1016/j.ceramint.2021.11.280 [18] SUN Z, TIAN Y, FAN Z, et al, Experimental investigations on enhanced alternating-magnetic field-assisted finishing of stereolithographic 3D printing zirconia ceramics [J]. Ceramics International, 2022, 48(24): 36609-36619. [19] SHIMADA K, WU Y, MATSUO Y, et al. Float polishing technique using new tool consisting of micro magnetic clusters [J]. Journal of Material Processing Technology,2005,162:690-695. [20] WANG Y, WU Y, Nomura M. Fundamental investigation on nano-precision surface finishing of electroless Ni–P-plated STAVAX steel using magnetic compound fluid slurry [J]. Precision Engineering,2017,48:32-44. doi: 10.1016/j.precisioneng.2016.11.003 [21] FENG M, WU Y, WANG Y, et al. Investigation on the polishing of aspheric surfaces with a doughnut-shaped magnetic compound fluid (MCF) tool using an industrial robot [J]. Precision Engineering,2020,61:182-193. doi: 10.1016/j.precisioneng.2019.09.018 [22] FENG M, WANG Y, WU Y. Investigation on polishing of zirconia ceramics using magnetic compound fluid: Relationship between material removal and surface roughness [J]. International Journal of Automation Technology,2021(1):15. -