CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁性复合流体抛光氧化锆陶瓷的工艺优化

张泽林 周宏明 冯铭 张祥雷 陈卓杰

张泽林, 周宏明, 冯铭, 张祥雷, 陈卓杰. 磁性复合流体抛光氧化锆陶瓷的工艺优化[J]. 金刚石与磨料磨具工程, 2023, 43(6): 712-719. doi: 10.13394/j.cnki.jgszz.2023.0003
引用本文: 张泽林, 周宏明, 冯铭, 张祥雷, 陈卓杰. 磁性复合流体抛光氧化锆陶瓷的工艺优化[J]. 金刚石与磨料磨具工程, 2023, 43(6): 712-719. doi: 10.13394/j.cnki.jgszz.2023.0003
ZHANG Zelin, ZHOU Hongming, FENG Ming, ZHANG Xianglei, CHEN Zhuojie. Process parameters optimization of zirconia ceramics polishing with magnetic compound fluid slurry[J]. Diamond & Abrasives Engineering, 2023, 43(6): 712-719. doi: 10.13394/j.cnki.jgszz.2023.0003
Citation: ZHANG Zelin, ZHOU Hongming, FENG Ming, ZHANG Xianglei, CHEN Zhuojie. Process parameters optimization of zirconia ceramics polishing with magnetic compound fluid slurry[J]. Diamond & Abrasives Engineering, 2023, 43(6): 712-719. doi: 10.13394/j.cnki.jgszz.2023.0003

磁性复合流体抛光氧化锆陶瓷的工艺优化

doi: 10.13394/j.cnki.jgszz.2023.0003
基金项目: 浙江省自然科学基金探索项目(LQ22E050008);温州市重大科技创新攻关项目(ZG2022029);温州市基础性科研项目(G20210001);浙江省教育厅一般科研项目(Y202249064)。
详细信息
    作者简介:

    张泽林,男,1997年生,硕士研究生。主要研究方向:磁场辅助超精密加工。 E-mail:610213471@qq.com

    通讯作者:

    冯铭,男,1988年生,博士、讲师。主要研究方向:硬脆等难加工金属与非金属材料多场辅助超精密加工等。 E-mail:fming@wzu.edu.cn

  • 中图分类号: TG73; TG58

Process parameters optimization of zirconia ceramics polishing with magnetic compound fluid slurry

  • 摘要: 为提高氧化锆陶瓷工件的表面质量,采用磁性复合流体(由包含纳米级铁磁颗粒的磁流体与包含微米级羰基铁颗粒的磁流变液混合而成)对氧化锆陶瓷进行抛光,以达到降低材料表面粗糙度和减少表面与亚表面损伤的目的。利用田口方法设计3因素3水平正交试验,着重分析磁铁转速、加工间隙和抛光液磨粒粒径对表面粗糙度和材料去除率的影响规律,并采用方差分析法分析各因素对2个评价指标的影响权重。可达到最低表面粗糙度的工艺参数组合为:磁铁转速,300 r/min;加工间隙,0.5 mm;磨粒粒径,1.25 μm。可达到最高材料去除率的工艺参数组合为:磁铁转速,400 r/min;加工间隙,0.5 mm;磨粒粒径,2.00 μm。根据优化的工艺参数进行抛光,表面粗糙度最低可达4.5 nm,材料去除率最高可达0.117 μm/min,优化效果显著。利用遗传算法优化BP神经网络建立抛光预测模型,预测误差为3.948 4%。

     

  • 图  1  磁性复合流体抛光示意图

    Figure  1.  Schematic diagram of magnetic compound fluid polishing

    图  2  磁性复合流体抛光实物图

    Figure  2.  Physical diagram of magnetic compound fluid polishing

    图  3  磁铁转速、加工间隙、磨粒粒径对表面粗糙度的影响

    Figure  3.  Effects of magnet speed, processing gap and abrasive particle size on surface roughness

    图  4  磁铁转速、加工间隙、磨粒粒径对材料去除率的影响

    Figure  4.  Effects of magnet speed, processing gap and abrasive particle size on material removal rate

    图  5  各因素对表面粗糙度和材料去除率的影响权重

    Figure  5.  Influence weights of each factor on surface roughness and material removal rate

    图  6  神经网络的输入层、隐藏层和输出层

    Figure  6.  Input, hidden and output layers of neural network

    图  7  适应度函数随代数变化图

    Figure  7.  Variation of the fitness function with generations

    图  8  均方差随迭代次数的变化

    Figure  8.  Variation of mean square error with the number of iterations

    图  9  粗糙度最优参数抛光后抛光位置的三维轮廓图、截面轮廓和表面形貌图

    Figure  9.  Three-dimensional contour diagram, cross-sectional profile and surface topography of polishing position after polishing with optimal parameters of roughness

    图  10  材料去除率最优参数抛光后抛光位置的三维轮廓图、截面轮廓和表面形貌图

    Figure  10.  Three-dimensional contour, cross-sectional contour and surface topography of polishing position after polishing with optimal parameters of material removal rate

    表  1  正交试验的因素和水平

    Table  1.   Factors and levels of orthogonal experiment

    水平因素
    磁铁转速
    nc / (r·min−1)
    A
    加工间隙
    h / mm
    B
    磨粒粒径
    as / μm
    C
    12000.500.50
    23000.751.25
    34001.002.00
    下载: 导出CSV

    表  2  试验正交表及试验结果

    Table  2.   Combinations of orthogonal experimental parameters and experimental results

    试验序号因素结果
    ABC粗糙度平均值 Ra / nm(S·N−1)r / dB材料去除率 dmrr / (μm·min−1)(S·N−1)d / dB
    1 200 0.50 0.50 9.90 −19.92 0.092 −20.73
    2 200 0.75 1.25 11.37 −21.11 0.100 −20.09
    3 200 1.00 2.00 13.67 −22.71 0.093 −20.60
    4 300 0.50 1.25 4.50 −13.08 0.114 −18.87
    5 300 0.75 2.00 9.43 −19.50 0.113 −18.94
    6 300 1.00 0.50 13.03 −22.31 0.091 −20.82
    7 400 0.50 2.00 8.50 −18.59 0.117 −18.64
    8 400 0.75 0.50 8.27 −18.35 0.107 −19.41
    9 400 1.00 1.25 8.63 −18.73 0.096 −20.29
    下载: 导出CSV

    表  3  每个因素的每个水平下的平均值

    Table  3.   Mean values at each level for each factor

    因素因素取值表面粗糙度
    Ra / nm
    材料去除率
    dmrr / (μm·min−1)
    磁铁转速
    nw / (r·min−1)
    200 11.64 0.095 11
    300 8.99 0.106 00
    400 8.47 0.106 90
    加工间隙
    h / mm
    0.50 7.63 0.107 67
    0.75 9.69 0.106 67
    1.00 11.78 0.093 68
    磨粒粒径
    as / μm
    0.50 10.40 0.096 67
    1.25 8.17 0.103 57
    2.00 10.53 0.107 78
    下载: 导出CSV
  • [1] ZHANG X, WU X, SHI J. Additive manufacturing of zirconia ceramics: A state-of-the-art review [J]. Journal of Materials Research and Technology,2020,9(4):9029-9048. doi: 10.1016/j.jmrt.2020.05.131
    [2] OLHERO S M, TORRES P, MESQUITA-GUIMARAES J, et al. Conventional versus additive manufacturing in the structural performance of dense alumina-zirconia ceramics: 20 years of research, challenges and future perspectives [J]. Journal of Manufacturing Processes,2022,77:838-879. doi: 10.1016/j.jmapro.2022.02.041
    [3] 曾尽娣, 宋晶晶, 张宇航, 等. 不同抛光处理全氧化锆修复体的表面粗糙度和细菌黏附 [J]. 中国组织工程研究,2023,27(21):3320-3324. doi: 10.12307/2023.174

    ZENG Jindi, SONG Jingjing, ZHANG Yuhang, et al. Surface roughness and bacteria adhesion of full zirconia restoration after different polishing treatment [J]. Chinese Journal of Tissue Engineering Research,2023,27(21):3320-3324. doi: 10.12307/2023.174
    [4] KLINGE B, MEYLE J. Soft-tissue integration of implants: Consensus report of working group 2 [J]. Clinical Oral Implants Research,2010,17(S2):93-96.
    [5] LI M, LYU B, YUAN J, et al. Evolution and equivalent control law of surface roughness in shear-thickening polishing [J]. International Journal of Machine Tools and Manufacture,2016,108:113-126. doi: 10.1016/j.ijmachtools.2016.06.007
    [6] LIU W, TANG D, GU H, et al. Experimental study on the mechanism of strain rate on grinding damage of zirconia ceramics [J]. Ceramics International,2022,48(15):21648-21655. doi: 10.1016/j.ceramint.2022.04.142
    [7] ZHANG G, WANG Z, CHEN W, et al. Single-point grinding of alumina and zirconia ceramics under two-dimensional compressive prestress [J]. International Journal of Precision Engineering and Manufacturing,2020,21:1-9. doi: 10.1007/s12541-019-00232-8
    [8] KIZAKI T, SUGITA N, MITSUISHI M, et al. Experimental analysis of the machinability in the thermally assisted milling process of zirconia ceramics [J]. Precision Engineering,2016,45(1):176-186.
    [9] 孙纪奎, 梅子彧, 楼雨欣, 等. 三维打印和切削氧化锆修复体的成型性能研究进展 [J]. 口腔颌面修复学杂志,2022,23(1):63-69.

    SUN Jikui, MEI Ziyu, LOU Yuxin, et al. Research progress of three-dimensional printing and cutting zirconia restorations [J]. Chinese Journal of Prosthodontics,2022,23(1):63-69.
    [10] ZUCUNI C P, GUILARDI L F, RIPPE M P, et al. Fatigue strength of yttria-stabilized zirconia polycrystals: Effects of grinding, polishing, glazing, and heat treatment [J]. Journal of the Mechanical Behavior of Biomedical Materials,2017,75:512-520. doi: 10.1016/j.jmbbm.2017.06.016
    [11] CARAVACA C F, FLAMANT Q, ANGLADA M, et al. Impact of sandblasting on the mechanical properties and aging resistance of alumina and zirconia based ceramics [J]. Journal of the European Ceramic Society,2018,38(3):915-925.
    [12] SEO S H, KIM J E, NAM N E, et al. Effect of air abrasion, acid etching, and aging on the shear bond strength with resin cement to 3Y-TZP zirconia [J]. Journal of the Mechanical Behavior of Biomedical Materials,2022,134:105348. doi: 10.1016/j.jmbbm.2022.105348
    [13] MAY M M, FRAGA S, MAY L G. Effect of milling, fitting adjustments, and hydrofluoric acid etching on the strength and roughness of CAD-CAM glass- ceramics: A systematic review and meta-analysis [J]. The Journal of Prosthetic Dentistry,2022,128(6):1190-1200. doi: 10.1016/j.prosdent.2021.02.031
    [14] PINTO P, CARVALHO A, SILVA F S, et al. Comparative toothbrush abrasion resistance and surface analysis of different dental restorative materials [J]. Tribology International,2022,175:107799. doi: 10.1016/j.triboint.2022.107799
    [15] XU L, LEI H, DING Z, et al. Preparation of the rod-shaped SiO2@C abrasive and effects of its microstructure on the polishing of zirconia ceramics [J]. Powder Technology,2022,395:338-347. doi: 10.1016/j.powtec.2021.09.070
    [16] XU L, PARK K, LEI H. Polishing of zirconia ceramics by chemically-induced micro-nano bubbles [J]. Ceramics International,2022,12:48.
    [17] MING Y, HUANG X, ZHOU D, et al. A novel Non-Newtonian fluid polishing technique for zirconia ceramics based on the weak magnetorheological strengthening thickening effect [J]. Ceramics International,2022,48(5):7192-7203. doi: 10.1016/j.ceramint.2021.11.280
    [18] SUN Z, TIAN Y, FAN Z, et al, Experimental investigations on enhanced alternating-magnetic field-assisted finishing of stereolithographic 3D printing zirconia ceramics [J]. Ceramics International, 2022, 48(24): 36609-36619.
    [19] SHIMADA K, WU Y, MATSUO Y, et al. Float polishing technique using new tool consisting of micro magnetic clusters [J]. Journal of Material Processing Technology,2005,162:690-695.
    [20] WANG Y, WU Y, Nomura M. Fundamental investigation on nano-precision surface finishing of electroless Ni–P-plated STAVAX steel using magnetic compound fluid slurry [J]. Precision Engineering,2017,48:32-44. doi: 10.1016/j.precisioneng.2016.11.003
    [21] FENG M, WU Y, WANG Y, et al. Investigation on the polishing of aspheric surfaces with a doughnut-shaped magnetic compound fluid (MCF) tool using an industrial robot [J]. Precision Engineering,2020,61:182-193. doi: 10.1016/j.precisioneng.2019.09.018
    [22] FENG M, WANG Y, WU Y. Investigation on polishing of zirconia ceramics using magnetic compound fluid: Relationship between material removal and surface roughness [J]. International Journal of Automation Technology,2021(1):15.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  243
  • HTML全文浏览量:  110
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-04
  • 修回日期:  2023-02-26
  • 录用日期:  2023-03-09
  • 网络出版日期:  2023-11-06
  • 刊出日期:  2023-12-20

目录

    /

    返回文章
    返回