CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金刚石/铜(银、碳化钛)界面性质的第一性原理计算

韩金江 陈冰威 路朋献 李颖 栗正新

韩金江, 陈冰威, 路朋献, 李颖, 栗正新. 金刚石/铜(银、碳化钛)界面性质的第一性原理计算[J]. 金刚石与磨料磨具工程, 2022, 42(5): 535-542. doi: 10.13394/j.cnki.jgszz.2022.5002
引用本文: 韩金江, 陈冰威, 路朋献, 李颖, 栗正新. 金刚石/铜(银、碳化钛)界面性质的第一性原理计算[J]. 金刚石与磨料磨具工程, 2022, 42(5): 535-542. doi: 10.13394/j.cnki.jgszz.2022.5002
HAN Jinjiang, CHEN Bingwei, LU Pengxian, LI Ying, LI Zhengxin. First-principles calculations of diamond/copper (silver, titanium carbide) interface properties[J]. Diamond & Abrasives Engineering, 2022, 42(5): 535-542. doi: 10.13394/j.cnki.jgszz.2022.5002
Citation: HAN Jinjiang, CHEN Bingwei, LU Pengxian, LI Ying, LI Zhengxin. First-principles calculations of diamond/copper (silver, titanium carbide) interface properties[J]. Diamond & Abrasives Engineering, 2022, 42(5): 535-542. doi: 10.13394/j.cnki.jgszz.2022.5002

金刚石/铜(银、碳化钛)界面性质的第一性原理计算

doi: 10.13394/j.cnki.jgszz.2022.5002
详细信息
    作者简介:

    韩金江,男,1998年生,硕士。主要研究方向:超硬材料及制品、计算材料学。E-mail:hanjinjianghuat@163.com

    通讯作者:

    李颖,女,1963年生,教授。主要研究方向:超硬材料及制品。E-mail:ying_li@haut.edu.cn

    栗正新,男,1964年生,教授。主要研究方向:磨料磨具,超硬材料及制品,计算机在材料科学中的应用。E-mail:zhengxin_li@haut.edu.cn

  • 中图分类号: TQ164;TB333

First-principles calculations of diamond/copper (silver, titanium carbide) interface properties

  • 摘要: 采用第一性原理计算的方法研究金刚石/铜、金刚石/银、金刚石/碳化钛3种界面的结构、电子结构和传热。结果表明:金刚石/碳化钛的界面结构最为稳定,界面间距(1.990 Å)最小,界面黏附功(5.578 J/m2)最大,结合强度最高。电子态密度、马利肯布居分析、差分电荷密度、径向分布函数的结果表明金刚石/碳化钛存在较多的电荷转移和较强键合作用。 声子态密度的计算结果表明金刚石/碳化钛的界面热阻较低。

     

  • 图  1  3种界面结构

    Figure  1.  Three interface structures

    图  2  金刚石/铜、金刚石/银、金刚石/碳化钛界面结构的UBER曲线

    Figure  2.  UBER curves of interface structures of diamond/copper, diamond/silver and diamond/titanium carbide

    图  3  3种界面结构的电子态密度

    Figure  3.  Electronic density of states of the three interface structures

    图  4  3种界面结构的差分电荷密度

    Figure  4.  Three interface structure difference charge density

    图  5  径向分布函数图

    Figure  5.  Radial distribution functions

    图  6  声子态密度分布曲线

    Figure  6.  Phonon density distribution curves

    表  1  计算的铜、银、金刚石、碳化钛的晶胞参数以及他人试验和计算的结果

    Table  1.   Calculated cell parameters of copper, silver, diamond and titanium carbide, as well as the results of others’ experiments and calculations

    种类晶胞参数 A / Å他人计算结果 B / Å试验数据
    C / Å
    3.6293.630[22]3.615[23]
    4.1384.160[24]4.085[25]
    金刚石3.5663.566[26]3.567[27]
    碳化钛4.3324.332[28]4.135[29]
    下载: 导出CSV

    表  2  碳化钛的表面原子弛豫

    Table  2.   Surface atomic relaxation of titanium carbide

    间距
    位置
    层间距变化 ξ / %
    第3层
    原子
    第5层
    原子
    第7层
    原子
    第9层
    原子
    第11层
    原子
    1/2−10.4922.61−21.21−21.21−20.36
    2/35.3911.0211.9812.45
    3/4−4.93−7.10−7.06
    4/50.491.87
    5/6−2.34
    下载: 导出CSV

    表  3  通过UBER和完全弛豫所得到的最佳界面间距和最佳黏附功

    Table  3.   Optimal interface spacing and adhesion work obtained by UBER and complete relaxation methods


    结构名称
    UBER完全弛豫
    界面间距
    d / Å
    界面黏附功
    Wad / (J·m−2)
    界面间距
    d / Å
    界面黏附功
    Wad / (J·m−2)
    金刚石/铜1.9012.3022.0461.919
    金刚石/银2.1283.9202.2364.291
    金刚石/碳化钛1.9674.9471.9905.578
    下载: 导出CSV

    表  4  金刚石/铜界面原子轨道布居分析

    Table  4.   Analysis of atomic orbital population at diamond/copper interface

    原子种类及位置电荷量 Q / eV
    spd总数差值
    铜第2层铜原子0.490.759.6910.930.07
    铜第1层铜原子0.540.609.7010.840.16
    金刚石第1层碳原子1.203.000.004.20−0.20
    金刚石第2层碳原子1.142.920.004.06−0.06
    下载: 导出CSV

    表  5  金刚石/银界面原子轨道布居分析

    Table  5.   Analysis of atomic orbital population at diamond/silver interface

    原子种类及位置电荷量 Q / eV
    spd总数差值
    银第2层银原子0.590.589.7810.950.05
    银第1层银原子0.600.439.7510.780.22
    金刚石第1层碳原子1.182.980.004.16−0.16
    金刚石第2层碳原子1.132.930.004.06−0.06
    下载: 导出CSV

    表  6  金刚石/碳化钛界面原子轨道布居分析

    Table  6.   Atomic orbital population analysis of diamond/titanium carbide interface

    原子种类及位置电荷量 Q / eV
    spd总数差值
    碳化钛第2层碳原子1.473.250.004.72−0.72
    碳化钛第1层钛原子2.186.362.6411.190.81
    金刚石第1层碳原子1.203.080.004.27−0.27
    金刚石第2层碳原子1.152.940.004.08−0.08
    下载: 导出CSV
  • [1] MOORE A L, SHI L. Emerging challenges and materials for thermal management of electronics [J]. Materials Today,2014,17(4):163-174. doi: 10.1016/j.mattod.2014.04.003
    [2] AZINA C, CORNU I, SILVAIN J F, et al. Effect of titanium and zirconium carbide interphases on the thermal conductivity and interfacial heat transfers in copper/diamond composite materials [J]. AIP Advances,2019,9(5):055315. doi: 10.1063/1.5052307
    [3] BAI G, ZHANG Y, DAI J, et al. Tunable coefficient of thermal expansion of Cu-B/diamond composites prepared by gas pressure infiltration [J]. Journal of Alloys and Compounds,2019,794:473-481. doi: 10.1016/j.jallcom.2019.04.252
    [4] JIA J, BAI S, XIONG D, et al. Effect of tungsten based coating characteristics on microstructure and thermal conductivity of diamond/Cu composites prepared by pressureless infiltration [J]. Ceramics International,2019,45(8):10810-10818. doi: 10.1016/j.ceramint.2019.02.156
    [5] MOLINA-JORDÁ J M. Thermal conductivity of metal matrix composites with coated inclusions: A new modelling approach for interface engineering design in thermal management [J]. Journal of Alloys and Compounds,2018,745:849-855. doi: 10.1016/j.jallcom.2018.02.092
    [6] CHE Z, LI J, WANG Q, et al. The formation of atomic-level interfacial layer and its effect on thermal conductivity of W-coated diamond particles reinforced Al matrix composites [J]. Composites Part A: Applied Science and Manufacturing,2018,107:164-170. doi: 10.1016/j.compositesa.2018.01.002
    [7] CIUPIŃSKI Ł, KRUSZEWSKI M J, GRZONKA J, et al. Design of interfacial Cr3C2 carbide layer via optimization of sintering parameters used to fabricate copper/diamond composites for thermal management applications [J]. Materials & Design,2017,120:170-185.
    [8] CHEN H, JIA C, LI S. Interfacial characterization and thermal conductivity of diamond/Cu composites prepared by two HPHT techniques [J]. Journal of Materials Science,2012,47(7):3367-3375. doi: 10.1007/s10853-011-6180-6
    [9] ARAI S, UEDA M. Fabrication of high thermal conductivity copper/diamond composites by electrodeposition under potentiostatic conditions [J]. Journal of Applied Electrochemistry,2020,50(5):631-638. doi: 10.1007/s10800-020-01414-3
    [10] LI H, WANG C, WU L, et al. Optimization of process parameters, microstructure, and thermal conductivity properties of Ti-coated diamond/copper composites prepared by spark plasma sintering [J]. Journal of Materials Science: Materials in Electronics,2021,32(7):9115-9125. doi: 10.1007/s10854-021-05579-1
    [11] WU X, WAN D, ZHANG W, et al. Constructing efficient heat transfer channels at the interface of diamond/Cu composites [J]. Composite Interfaces,2021,28(6):625-635. doi: 10.1080/09276440.2020.1795466
    [12] JHONG Y S, TSENG H T, LIN S J. Diamond/Ag-Ti composites with high thermal conductivity and excellent thermal cycling performance fabricated by pressureless sintering [J]. Journal of Alloys and Compounds,2019,801:589-595. doi: 10.1016/j.jallcom.2019.06.167
    [13] TANG Y, WANG L, ZHAO C. Enhancement of the thermal properties of silver-diamond composites with chromium carbide coating [J]. Applied Physics A,2014,115(2):379-385. doi: 10.1007/s00339-014-8254-1
    [14] CHEN L, CHEN S, HOU Y. Understanding the thermal conductivity of diamond/copper composites by first-principles calculations [J]. Carbon,2019,148:249-257. doi: 10.1016/j.carbon.2019.03.051
    [15] XIE H, CHEN Y, ZHANG T, et al. Adhesion, bonding and mechanical properties of Mo doped diamond/Al (Cu) interfaces: A first principles study [J]. Applied Surface Science,2020,527:146817. doi: 10.1016/j.apsusc.2020.146817
    [16] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: Ideas, illustrations and the CASTEP code [J]. Journal of Physics: Condensed Matter,2002,14(11):2717-2744. doi: 10.1088/0953-8984/14/11/301
    [17] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Physical Review B,1990,41(11):7892. doi: 10.1103/PhysRevB.41.7892
    [18] WU Z, COHEN R E. More accurate generalized gradient approximation for solids [J]. Physical Review B,2006,73(23):235116. doi: 10.1103/PhysRevB.73.235116
    [19] CHADI D J. Special points for Brillouin-zone integrations [J]. Physical Review B,1977,16(4):1746. doi: 10.1103/PhysRevB.16.1746
    [20] HEAD J D, ZERNER M C. A broyden-fletcher-goldfarb-shanno optimization procedure for molecular geometries [J]. Chemical Physics Letters,1985,122(3):264-270. doi: 10.1016/0009-2614(85)80574-1
    [21] BARZILAI J, BORWEIN J M. Two-point step size gradient methods [J]. IMA Journal of Numerical Analysis,1988,8(1):141-148. doi: 10.1093/imanum/8.1.141
    [22] KIM W J, XING S, KREMER G, et al. Electronic structure of heavy halogen atoms adsorbed on the Cu (111) surface: A combined ARPES and first principles calculations study [J]. The Journal of Physical Chemistry C,2019,123(43):26309-26314. doi: 10.1021/acs.jpcc.9b07057
    [23] VILLARS P, DAAMS J L C. Atomic-environment classification of the chemical elements [J]. Journal of Alloys and Compounds,1993,197(2):177-196. doi: 10.1016/0925-8388(93)90041-K
    [24] QIAN H Q, MAO H Y, SONG F, et al. Study on the adsorption of fluorescein on Ag (110) substrate [J]. Applied Surface Science,2010,256(9):2686-2690. doi: 10.1016/j.apsusc.2009.10.056
    [25] LIU L, Bassett W A. Compression of Ag and phase transformation of NaCl [J]. Journal of Applied Physics,1973,44(4):1475-1479. doi: 10.1063/1.1662396
    [26] GU K, PANG M, ZHAN Y. Insight into interfacial structure and bonding nature of diamond (001)/Cr3C2 (001) interface [J]. Journal of Alloys and Compounds,2019,770:82-89. doi: 10.1016/j.jallcom.2018.08.112
    [27] OWNBY P D, YANG X, LIU J. Calculated X‐ray diffraction data for diamond polytypes [J]. Journal of the American Ceramic Society,1992,75(7):1876-1883. doi: 10.1111/j.1151-2916.1992.tb07211.x
    [28] KHANZADEH M, ALAHYARIZADEH G. A DFT study on pressure dependency of TiC and ZrC properties: Interconnecting elastic constants, thermodynamic, and mechanical properties [J]. Ceramics International,2021,47(7):9990-10005. doi: 10.1016/j.ceramint.2020.12.145
    [29] RAZUMOVSKIY V I, POPOV M N, DING H, et al. Formation and interaction of point defects in group IVb transition metal carbides and nitrides [J]. Computational Materials Science,2015,104:147-154. doi: 10.1016/j.commatsci.2015.03.042
    [30] SUN Q, WEI Y, ZHANG J, et al. Effect of lattice mismatch on HgCdTe LPE film surface morphology [J]. Journal of Electronic Materials,2016,45(9):4674-4679. doi: 10.1007/s11664-016-4637-8
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  345
  • HTML全文浏览量:  91
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-19
  • 修回日期:  2022-02-20
  • 录用日期:  2022-03-31
  • 刊出日期:  2022-10-16

目录

    /

    返回文章
    返回