CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

主轴外圆超光滑研磨工艺

李彬 宋晓宇 吴媛媛 张晓朋 任东旭 赵则祥

李彬, 宋晓宇, 吴媛媛, 张晓朋, 任东旭, 赵则祥. 主轴外圆超光滑研磨工艺[J]. 金刚石与磨料磨具工程, 2023, 43(4): 447-454. doi: 10.13394/j.cnki.jgszz.2022.0224
引用本文: 李彬, 宋晓宇, 吴媛媛, 张晓朋, 任东旭, 赵则祥. 主轴外圆超光滑研磨工艺[J]. 金刚石与磨料磨具工程, 2023, 43(4): 447-454. doi: 10.13394/j.cnki.jgszz.2022.0224
LI Bin, SONG Xiaoyu, WU Yuanyuan, ZHANG Xiaopeng, REN Dongxu, ZHAO Zexiang. Supersmooth grinding technology of spindle outer circle[J]. Diamond & Abrasives Engineering, 2023, 43(4): 447-454. doi: 10.13394/j.cnki.jgszz.2022.0224
Citation: LI Bin, SONG Xiaoyu, WU Yuanyuan, ZHANG Xiaopeng, REN Dongxu, ZHAO Zexiang. Supersmooth grinding technology of spindle outer circle[J]. Diamond & Abrasives Engineering, 2023, 43(4): 447-454. doi: 10.13394/j.cnki.jgszz.2022.0224

主轴外圆超光滑研磨工艺

doi: 10.13394/j.cnki.jgszz.2022.0224
基金项目: 国家自然科学基金(5197052166,51905558)。
详细信息
    作者简介:

    李彬,男,1982年生,博士、副教授、研究生导师。主要研究方向:超精密加工技术与装备,精密测试技术。E-mail:libin_zzti@zut.edu.cn

  • 中图分类号: TG58; TH161+.1

Supersmooth grinding technology of spindle outer circle

  • 摘要: 为改善精密磨削后主轴外圆柱面的表面粗糙度和圆度,提出新型立式精密研磨方法并研制立式研磨装置。文章选取立式研磨方式下气缸压力、油石粒度、主轴转速3个关键工艺参数对轴类零件加工精度的影响进行分析。基于 L9( 34 ) 正交试验设计,采用S/N响应法和 ANOVA 方差法对试验数据进行分析,得到优化的工艺参数组合,并用其对5根尺寸为ϕ50 mm × 160 mm的40Cr材质主轴外圆柱面进行研磨。结果表明:使用立式研磨法对工件外圆柱面加工3 h后,工件的平均材料去除率为7 μm/h,平均圆度误差由4.12 μm降为1.47 μm,表面粗糙度由326 nm降为41 nm。

     

  • 图  1  立式研磨原理

    Figure  1.  Principle of vertical lapping

    图  2  立式研磨设备

    Figure  2.  Vertical grinding equipment

    图  3  某组工件的初始表面质量测量结果

    Figure  3.  Initial surface quality measurement results of a component

    图  4  工件表面粗糙度和圆度测量

    Figure  4.  Measurement of surface roughness and roundness of workpieces

    图  5  材料去除率、表面粗糙度、圆度随着气缸压力的变化柱状图(S/N平均响应)

    Figure  5.  Bar chart of material removal rate, surface roughness and roundness with cylinder pressure (S/N mean response)

    图  6  材料去除率、表面粗糙度、圆度随着磨粒粒度变化的柱状图(S/N平均响应)

    Figure  6.  Bar chart of material removal rate, surface roughness and roundness with grain size (S/N mean response)

    图  7  材料去除率、表面粗糙度、圆度随着主轴转速变化的柱状图(S/N平均响应)

    Figure  7.  Bar chart of material removal rate, surface roughness and roundness with spindle speed (S/N mean response)

    图  8  权重比例图

    Figure  8.  Weight ratio diagram

    图  9  研磨后各个工件圆度误差

    Figure  9.  Roundness error of each workpiece after polishing

    图  10  研磨前后工件平均圆度对比

    Figure  10.  Comparison of average roundness of workpiece before and after polishing

    图  11  研磨前后工件的圆度误差

    Figure  11.  Roundness error of workpiece before and after polishing

    图  12  研磨后各个工件的表面粗糙度

    Figure  12.  Surface roughness of each workpiece after polishing

    图  13  研磨前后工件平均表面粗糙度对比

    Figure  13.  Comparison of average surface roughness of workpiece before and after polishing

    图  14  研磨前后工件的宏观表面质量对比

    Figure  14.  Comparison of macroscopic surface quality of workpiece before and after polishing

    表  1  正交试验表

    Table  1.   Orthogonal experiment table


    试验序号
    因素
    A
    气缸压力
    p / MPa
    B
    磨粒粒度
    l / μm
    C
    主轴转速
    V / (r·min−1)
    10.033.5300
    20.035.0500
    30.037.0800
    40.053.5800
    50.055.0500
    60.057.0300
    70.073.5500
    80.075.0300
    90.077.0800
    下载: 导出CSV

    表  2  优化的工艺参数组合

    Table  2.   Optimized process parameter combination

    工艺参数类型或取值
    工件材料40Cr合金钢
    工件尺寸ϕ50 mm × 160 mm
    磨粒粒度 l / μm3.5
    冷却液纯净水
    气体静压主轴压力 p1 / MPa0.40
    上顶尖压力 p2 / MPa0.20
    气缸压力 p3 / MPa0.05
    轴向进给速度 vf / (mm·min−1)1 000
    主轴转速 V / (r·min−1)500
    加工时间 t / h3
    下载: 导出CSV
  • [1] 赫玉娟, 曹克伟, 张大卫, 等. 对超精密加工及纳米加工环境的分析 [J]. 组合机床与自动化加工技术,2003(10):77-78. doi: 10.3969/j.issn.1001-2265.2003.10.016

    HAO Yujuan, CAO Kewei, ZHANG Dawei, et al. Analysis of ultra-precision machining and nano-machining environment [J]. Combined machine tool and automatic machining technology,2003(10):77-78. doi: 10.3969/j.issn.1001-2265.2003.10.016
    [2] 欧玲, 黄柳红. 现代机械制造工艺及精密加工技术探究 [J]. 科技创新与应用,2022,12(26):176-178 + 182.

    OU Ling, HUANG Liuhong. Research on modern machinery manufacturing technology and precision machining technology [J]. Technology Innovation and Application,2022,12(26):176-178 + 182.
    [3] YA Pingfan. Research of ultra precision machining technology [J]. Applied Mechanics and Materials, 2014, 3634(687/688/689/690/691): 476-479.
    [4] 刘如意, 赵则祥, 曹秀成, 等. 非理想圆柱面气静压轴回转精度分析 [J]. 制造技术与机床,2020(1):169-175. doi: 10.19287/j.cnki.1005-2402.2020.01.031

    LIU Ruyi, ZHAO Zexiang, CAO Xiucheng, et al. Analysis of rotational accuracy of non-ideal cylindrical surfaces aerostatic spindle [J]. Manufacturing Technology & Machine Tool,2020(1):169-175. doi: 10.19287/j.cnki.1005-2402.2020.01.031
    [5] 熊万里, 侯志泉, 吕浪. 液体静压主轴回转误差的形成机理研究 [J]. 机械工程学报,2014,50(7):112-119. doi: 10.3901/JME.2014.07.112

    XIONG Wanli, HOU Zhiquan, LYU Lang. Study on the mechanism of hydrostatic spindle rotational error motion [J]. Journal of Mechanical Engineering,2014,50(7):112-119. doi: 10.3901/JME.2014.07.112
    [6] SUN Z Z, DAI Y F, HU H H. Research on deterministic figuring of ultra-precision shaft parts based on analysis and control of figuring ability [J]. Materials,2020,13(11):2458.
    [7] LAYAK S, SABIAY C. Optimization and analysis of super finishing lathe attachment with pin on disk experiment on ebonite coated disk [J]. International Journal of Engineering and Advanced Technology,2019,8(13):558-563.
    [8] 雷阳, 杨晓光, 冯凯萍, 等. 基于金刚石固结磨具的圆柱滚子高效研磨工艺研究 [J]. 金刚石与磨料磨具工程,2021,41(3):74-81. doi: 10.13394/j.cnki.jgszz.2021.3.0011

    LEI Yang, YANG Xiaoguang, FENG Kaiping, et al. Research on high efficiency lapping process of cylindrical roller based on consolidated diamond abrasive tool [J]. Diamond & Abrasives Engineering,2021,41(3):74-81. doi: 10.13394/j.cnki.jgszz.2021.3.0011
    [9] 김건희. Ultra precision machining technology for machining accuracy[J]. Journal of the Korean Society for Precision Engineering, 2016, 33(11): 883.
    [10] 周文华, 姚蔚峰, 冯铭, 等. 基于双平面研磨方法的圆柱滚子抛光实验研究 [J]. 轻工机械,2014,32(4):36-38. doi: 10.3969/j.issn.1005-2895.2014.04.009
    [11] 吴真繁. 基于响应面方法的注塑成型工艺优化和质量预测研究 [D]. 宁波: 宁波大学, 2009.

    WU Zhenfan. Study on injection molding process optimization and quality prediction based on response surface methodology [D]. Ningbo: Ningbo University, 2009.
    [12] 戴伟涛, 吕冰海, 翁海舟, 等. 圆柱表面声波辅助剪切增稠抛光优化实验研究 [J]. 表面技术,2016,45(2):188-193. doi: 10.16490/j.cnki.issn.1001-3660.2016.02.030

    DAI Weitao, LYU Binghai, WONG Haizhou, et al. Optimization experiment of acoustic assisted shear thickening polishing of cylindrical surface [J]. Surface Technology,2016,45(2):188-193. doi: 10.16490/j.cnki.issn.1001-3660.2016.02.030
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  341
  • HTML全文浏览量:  133
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-19
  • 修回日期:  2023-02-05
  • 录用日期:  2023-03-01
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回