Effect of abrasive particle arrangement on surface morphology ground with pyramid belt
-
摘要: 为研究金字塔型砂带磨粒排布对磨抛加工工件表面形貌的影响,建立金字塔型砂带磨抛加工的数学模型及解析算法,采用Abaqus软件进行粗糙度值的模拟仿真预测,通过机器人磨抛系统平台进行金字塔型砂带磨抛实验并检测加工后工件的表面形貌,与仿真预测值进行对比。结果表明:粗糙度仿真预测值与实际测量值变化趋势相同,吻合度良好,误差在0.03 μm以内,最大误差率为16.6%。仿真模型与实验过程保持一致,可以用于预测金字塔型砂带磨抛加工的表面粗糙度。Abstract: To study the influence of grain arrangement on the surface profile of the workpiece, a mathematical model and its corresponding analytical algorithm of pyramidal abrasive belt grinding were established. The roughness value was simulated and predicted with Abaqus software. Grinding tests were carried out on the robot grinding system platform with pyramidal abrasive belt, and the surface profile were inspected and then compared with the simulation. The results show that the simulated roughness and the measured values have similar variation trend with good consistency, where the error is within 0.03 μm and the maximum error rate is 16.6%. The theoretical simulation and test results remain consistent, indicating that the model could be used to predict the surface roughness of workpiece ground with pyramidal abrasive belt.
-
表 1 磨料和工件的力学性能
Table 1. Mechanical properties of abrasives and workpieces
材料性质 取值 磨料 工件 密度 ρ / (g·cm−3) 3.96 4.68 弹性模量 E / GPa 370.0 115.8 热导率 K / (W·m−1·K−1) 29.3 7.5 泊松比 μ 0.22 0.29 热膨胀系数 β / (m·K−1) 8.6 10.0 比热容 c / (J·kg−1·K −1) 600 605 参数 数值 A / MPa 1 100 B / MPa 590 C 0.015 2 N 0.41 M 0.833 Tr / ℃ 25 Tm / ℃ 1 675 表 3 仿真结果
Table 3. Simulation result
序号 砂带粒度号 磨抛力 F /N Ra-仿真 / μm 1 P150 1.0 0.14 2 P150 1.5 0.15 3 P150 2.0 0.18 4 P150 2.5 0.20 5 P150 3.0 0.24 6 P220 2.0 0.14 7 P320 2.0 0.12 8 P600 2.0 0.09 9 P1000 2.0 0.05 表 4 表面粗糙度仿真预测值与实验测量值
Table 4. Surface roughness simulation prediction value and experimental measurement value
序号 砂带粒度号 磨抛力 F / N Ra-仿真 / μm Ra-实验 / μm 误差率
ξ/%1 P150 1.0 0.14 0.15 6.7 2 P150 1.5 0.15 0.17 11.8 3 P150 2.0 0.18 0.21 14.3 4 P150 2.5 0.20 0.23 13.0 5 P150 3.0 0.24 0.26 7.7 6 P220 2.0 0.14 0.16 12.5 7 P320 2.0 0.12 0.11 9.1 8 P600 2.0 0.09 0.08 12.5 9 P1000 2.0 0.05 0.06 16.6 -
[1] SHI Z, MALKIN S. Wear of electroplated cBN grinding wheels [J]. Journal of Manufacturing Science and Engineering,2006,128(1):110-118. doi: 10.1115/1.2122987 [2] 刘鹏展, 邹文俊, 彭进. 堆积磨料制备技术及堆积磨料砂带应用现状 [J]. 超硬材料工程,2017,29(3):40-44.LIU Pengzhan, ZOU Wenjun, PENG Jin. Bulk abrasive preparation technology and the application status of bulk abrasive belt [J]. Superhard Material Engineering,2017,29(3):40-44. [3] BRINKSMEIER E, MUTLUGÜNES Y, KLOCKE F, et al. Ultra-precision grinding [J]. CIRP Annals - Manufacturing Technology,2010,59(2):652-671. doi: 10.1016/j.cirp.2010.05.001 [4] 郭高锋, 张凤林, 周玉梅. 单层钎焊CBN砂轮中磨粒有序排布形式对工件表面粗糙度的影响 [J]. 超硬材料工程,2013,25(2):1-5.GUO Gaofeng, ZHANG Fenglin, ZHOU Yumei. Effect of the form for orderly arraying of cBN grits in monolayer brazed cBN grinding wheels on the surface roughness of workpieces [J]. Superhard Material Engineering,2013,25(2):1-5. [5] KOSHY P, IWASALD A, ELBESTAWL M A. Surface generation with engineered diamond grinding wheels: Insights from simulation [J]. CIRP Annals - Manufacturing Technology,2003,52(1):271-274. doi: 10.1016/S0007-8506(07)60582-4 [6] 马天嵘, 党嘉强, 安庆龙. 基于DEFORM3D的伺服阀芯端面磨削毛刺形成仿真 [J]. 金刚石与磨料磨具工程,2019,39(5):50-56. doi: 10.13394/j.cnki.jgszz.2019.5.0010MA Tianrong, DANG Jiaqiang, AN Qinglong. Burr formation simulation of end face grinding core of servo valve based on DEFORM3D [J]. Diamond & Abrasives Engineering,2019,39(5):50-56. doi: 10.13394/j.cnki.jgszz.2019.5.0010 [7] 赵国伟, 吕玉山, 李雨菲, 等. 有序化砂轮磨抛表面粗糙度仿真 [J]. 机械设计与制造,2018(3):223-225, 229.ZHAO Guowei, LÜ Yushan, LI Yufei, et al. Simulation of the surface roughness with grinding wheel of ordered abrasive pattern [J]. Machinery Design & Manufacture,2018(3):223-225, 229. [8] BUTLER-SMITH P W, AXINTE D A, DAINE M. Preferentially oriented diamond micro-arrays: A laser patterning technique and preliminary evaluation of their cutting forces and wear characteristics [J]. International Journal of Machine Tools & Manufacture,2009,49(15):1175-1184. doi: 10.1016/j.ijmachtools.2009.08.007 [9] 杨威, 朱建辉, 师超钰, 等. 砂轮表面磨粒出露高度对轴承钢磨削振动的影响 [J]. 金刚石与磨料磨具工程,2019,39(5):73-78. doi: 10.13394/j.cnki.jgszz.2019.5.0013YANG Wei, ZHU Jianhui, SHI Chaoyu, et al. Effect of abrasive particle exposure height on grinding vibration of bearing steel [J]. Diamond & Abrasives Engineering,2019,39(5):73-78. doi: 10.13394/j.cnki.jgszz.2019.5.0013 [10] 黄云, 甲花索朗, 肖贵坚. 镍铝青铜合金仿生表面的砂带磨削及其降噪特性 [J]. 中国机械工程,2020,31(20):2497-2504.HUANG Yun, JIAHUA Suolang, XIAO Guijian. Bionic surface abrasive belt grinding of nickel-aluminum bronze alloy and its noise reduction characteristics [J]. China Mechanical Engineering,2020,31(20):2497-2504. [11] 肖贵坚, 贺毅, 黄云, 等. 基于单颗粒模型的航发叶片砂带磨削微观仿生锯齿状表面形成及实验 [J]. 航空学报,2020,41(7):27-36.XIAO Guijian, HE Yi, HUANG Yun, et al. Single particle removal model and experimental study on micro bionic zigzag surface of aeronautical blade using belt grinding [J]. Acta Aeronautica et Astronautica Sinica,2020,41(7):27-36. [12] HOLMES G L, CULLER S R, HARDY D H, et al. Precisely shaped particles and method of making the same: US5549962 [P]. 1996-8-27. [13] KATARIA H, CARRANO A L, THORN B K. Modeling of tooling-workpiece interactions on random surfaces [J]. Advances in Mechanical Engineering,2012,4:1-8. doi: 10.1155/2012/807018 [14] 王宝林. 钛合金TC17力学性能及其切削加工特性研究 [D]. 济南: 山东大学, 2013.WANG Baolin. Study on the mechanical properties of titanium alloy TC17 and characteristics in machining [D]. Jinan: Shandong University, 2013. -