CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纯相PcBN的高温高压制备综述

王楚琦 寇自力

王楚琦, 寇自力. 纯相PcBN的高温高压制备综述[J]. 金刚石与磨料磨具工程, 2022, 42(2): 162-168. doi: 10.13394/j.cnki.jgszz.2021.0409
引用本文: 王楚琦, 寇自力. 纯相PcBN的高温高压制备综述[J]. 金刚石与磨料磨具工程, 2022, 42(2): 162-168. doi: 10.13394/j.cnki.jgszz.2021.0409
WANG Chuqi, KOU Zili. A review of preparing binderless PcBN at high temperature and high pressure[J]. Diamond & Abrasives Engineering, 2022, 42(2): 162-168. doi: 10.13394/j.cnki.jgszz.2021.0409
Citation: WANG Chuqi, KOU Zili. A review of preparing binderless PcBN at high temperature and high pressure[J]. Diamond & Abrasives Engineering, 2022, 42(2): 162-168. doi: 10.13394/j.cnki.jgszz.2021.0409

纯相PcBN的高温高压制备综述

doi: 10.13394/j.cnki.jgszz.2021.0409
详细信息
    通讯作者:

    寇自力,男,1962年生,研究员、硕士生导师。主要研究方向:高压科学与技术,高压下新材料的设计与制备,超硬材料,超硬刀具。E-mail:kouzili@scu.edu.cn

  • 中图分类号: O521+.2; O482.1; O469

A review of preparing binderless PcBN at high temperature and high pressure

  • 摘要: PcBN是cBN的聚晶体,具有尺寸大、各向同性、无解理面等优点,因而应用广泛。商用PcBN大多采用添加黏结剂的方式进行烧结以降低烧结条件,通常是在压力为5.5~7.7 GPa、温度为1600~2300 K条件下合成的。但黏结剂也降低了产品的性能,其维氏硬度在22~45 GPa。鉴于材料本身就是最好的黏结剂,本文对使用4种不同初始材料制备纯相PcBN的烧结行为及材料性能进行介绍和评价。用cBN作为初始材料并配合相关工艺能制备出性能较好的纯相PcBN材料。

     

  • 图  1  BN的高温高压相和反应图[7]

    Figure  1.  Phase and reaction diagram of BN at HPHT conditions[7]

    图  2  透明cBN样品图[9]

    Figure  2.  Transparent cBN sample[9]

    图  3  PcBN的维氏硬度与压痕载荷的对应关系[10]

    Figure  3.  Relationship between Vickers hardness and indentation loading force of PcBN[10]

    图  4  不同烧结条件下样品的XRD图[13]

    Figure  4.  XRD patterns of samples at different conditions[13]

    图  5  纳米孪晶cBN的相关样品图[18]

    Figure  5.  Relative samples of nano twinned cBN[18]

    图  6  透明PcBN样品[20]

    Figure  6.  Samples of transparent PcBN[20]

    (a) 8.0~12.0 μm, 2 500 ℃; (b) 2.0~4.0 μm, 2 350 ℃; (c) 2.0~4.0 μm, 2 400 ℃; (d) 8.0~12.0 μm, 2 400 ℃; (e) 0.5~1.2 μm, 2 400 ℃;

    图  7  样品相关性能表征[21]

    Figure  7.  Characteristics of samples[21]

    图  8  cBN中位错与孪晶晶界的相互作用HRTEM图像[22]

    Figure  8.  HRTEM result of interactions between dislocation and twin boundaries in cBN[22]

    图  9  晶粒之间有较薄的非晶态晶界[23]

    Figure  9.  Thin amorphous grain boundaries among grains[23]

    图  10  透明PcBN相关表征[24]

    Figure  10.  Relative characterization of transparent PCBN[24]

  • [1] WENTORF R H. Cubic form of boron nitride [J]. The Journal of Chemical Physics,1957,26(4):956.
    [2] YANG D, JI X, LIU H, et al. The influence of Li-based catalysts / additives on cBN crystal morphologies synthesized under HPHT [J]. Diamond and Related Materials,2011,20(2):174-177. doi: 10.1016/j.diamond.2010.11.023
    [3] 吉晓瑞, 苏作鹏, 杜勇慧, 等. 化学反应直接成核生长立方氮化硼 [J]. 金刚石与磨料磨具工程,2007(4):25-26. doi: 10.3969/j.issn.1006-852X.2007.04.007

    JI Xiaorui, SU Zuopeng, DU Yonghui, et al. Studies about the growth of cBN nucleated directly by chemical reaction [J]. Diamond and Abrasives Engineering,2007(4):25-26. doi: 10.3969/j.issn.1006-852X.2007.04.007
    [4] KO E H, KIM T H, CHOI S, et al. Synthesis of cubic boron nitride nanoparticles from boron oxide, melamine and NH3 by non-transferred Ar-N2 thermal plasma [J]. Journal of Nanoscience and Nanotechnology,2015,15(11):8515-8520. doi: 10.1166/jnn.2015.11469
    [5] BEASON M T, PAULS J M, GUNDUZ I E, et al. Shock-induced reaction synthesis of cubic boron nitride [J]. Applied Physics Letters,2018,112(17):171903. doi: 10.1063/1.5017836
    [6] BUNDY F P, WENTORF R H. Direct transformation of hexagonal boron nitride to denser forms [J]. The Journal of Chemical Physics,1963,38(5):1144-1149. doi: 10.1063/1.1733815
    [7] CORRIGAN F R, BUNDY F P. Direct transitions among the allotropic forms of boron nitride at high pressures and temperatures [J]. The Journal of Chemical Physics,1975,63(9):3812-3820. doi: 10.1063/1.431874
    [8] WAKATSUKI M, ICHINOSE K, AOKI T. Synthesis of polycrystalline cubic BN [J]. Materials Research Bulletin,1972,7(9):999-1003. doi: 10.1016/0025-5408(72)90091-8
    [9] AKAISHI M, SATOH T, ISHII M, et al. Synthesis of translucent sintered cubic boron nitride [J]. Journal of Materials Science Letters,1993,12(24):1883-1885. doi: 10.1007/BF00882529
    [10] TANIGUCHI T, AKAISHI M, YAMAOKA S. Mechanical properties of polycrystalline translucent cubic boron nitride as characterized by the Vickers indentation method [J]. Journal of the American Ceramic Society,1996,79(2):547-549. doi: 10.1111/j.1151-2916.1996.tb08165.x
    [11] OHASHI T, YAMAMOTO K, HAMADA Y, et al. Some properties and cutting performance of polycrystalline cubic boron nitride with no additives [J]. International Journal of Refractory Metals and Hard Materials,1998,16(4/5/6):403-407. doi: 10.1016/S0263-4368(98)00057-2
    [12] SUMIYA H, UESAKA S, SATOH S. Mechanical properties of high purity polycrystalline cBN synthesized by direct conversion sintering method [J]. Journal of Materials Science,2000,35(5):1181-1186. doi: 10.1023/A:1004780218732
    [13] YANG M, KOU Z L, LIU T, et al. Polycrystalline cubic boron nitride prepared with cubic-hexagonal boron nitride under high pressure and high temperature [J]. Chinese Physics B,2018,27(5):056105. doi: 10.1088/1674-1056/27/5/056105
    [14] DUB S N, PETRUSHA I A. Mechanical properties of polycrystalline cBN obtained from pyrolytic gBN by direct transformation technique [J]. High Pressure Research,2006,26(2):71-77. doi: 10.1080/08957950600764239
    [15] DUBROVINSKAIA N, SOLOZHENKO V L, MIYAJIMA N, et al. Superhard nanocomposite of dense polymorphs of boron nitride: Noncarbon material has reached diamond hardness [J]. Applied Physics Letters,2007,90(10):101912. doi: 10.1063/1.2711277
    [16] SOLOZHENKO V L, KURAKEVYCH O O, Le GODEC Y. Creation of nanostuctures by extreme conditions: High‐pressure synthesis of ultra- hard nanocrystalline cubic boron nitride [J]. Advanced Materials,2012,24(12):1540-1544. doi: 10.1002/adma.201104361
    [17] ICHIDA Y, OHFUJI H, IRIFUNE T, et al. Synthesis of ultrafine nano-polycrystalline cubic boron nitride by direct transformation under ultrahigh pressure [J]. Journal of the European Ceramic Society,2018,38(7):2815-2822. doi: 10.1016/j.jeurceramsoc.2018.02.023
    [18] TIAN Y, XU B, YU D, et al. Ultrahard nanotwinned cubic boron nitride [J]. Nature,2013,493(7432):385-388. doi: 10.1038/nature11728
    [19] DUBROVINSKAIA N, DUBROVINSKY L. Controversy about ultrahard nanotwinned cBN [J]. Nature,2013,502(7472):E1-E2. doi: 10.1038/nature12620
    [20] TANIGUCHI T, AKAISHI M, YAMAOKA S. Sintering of cubic boron nitride without additives at 7.7 GPa and above 2 000 ℃ [J]. Journal of Materials Research,1999,14(1):162-169. doi: 10.1557/JMR.1999.0024
    [21] LIU G, KOU Z, YAN X, et al. Submicron cubic boron nitride as hard as diamond [J]. Applied Physics Letters,2015,106(12):121901. doi: 10.1063/1.4915253
    [22] LIU T, KOU Z, LU J, et al. Preparation of superhard cubic boron nitride sintered from commercially available submicron powders [J]. Journal of Applied Physics,2017,121(12):125902. doi: 10.1063/1.4979312
    [23] YIN X, KOU Z, WANG Z, et al. Micro-sized polycrystalline cubic boron nitride with properties comparable to nanocrystalline counterparts [J]. Ceramics International,2020,46(7):8806-8810. doi: 10.1016/j.ceramint.2019.12.120
    [24] ZHAO M, KOU Z, ZHANG Y, et al. Superhard transparent polycrystalline cubic boron nitride [J]. Applied Physics Letters,2021,118(15):151901. doi: 10.1063/5.0045545
  • 加载中
图(10)
计量
  • 文章访问数:  332
  • HTML全文浏览量:  106
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-09
  • 修回日期:  2022-01-21
  • 录用日期:  2022-03-09
  • 刊出日期:  2022-05-27

目录

    /

    返回文章
    返回