CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金刚石砂轮磨削钛合金时的磨削力研究

冯茹

冯茹. 金刚石砂轮磨削钛合金时的磨削力研究[J]. 金刚石与磨料磨具工程, 2022, 42(2): 193-200. doi: 10.13394/j.cnki.jgszz.2021.0120
引用本文: 冯茹. 金刚石砂轮磨削钛合金时的磨削力研究[J]. 金刚石与磨料磨具工程, 2022, 42(2): 193-200. doi: 10.13394/j.cnki.jgszz.2021.0120
FENG Ru. Study on grinding force in grinding titanium alloy with diamond grinding wheel[J]. Diamond & Abrasives Engineering, 2022, 42(2): 193-200. doi: 10.13394/j.cnki.jgszz.2021.0120
Citation: FENG Ru. Study on grinding force in grinding titanium alloy with diamond grinding wheel[J]. Diamond & Abrasives Engineering, 2022, 42(2): 193-200. doi: 10.13394/j.cnki.jgszz.2021.0120

金刚石砂轮磨削钛合金时的磨削力研究

doi: 10.13394/j.cnki.jgszz.2021.0120
基金项目: 吉林省科技发展计划项目 (20190302099GX)。
详细信息
    作者简介:

    冯茹,女,1986年生,讲师。主要研究方向:汽车维修、机械加工。 E-mail: fengru1111@126.com

  • 中图分类号: TG58;TG74;TQ164

Study on grinding force in grinding titanium alloy with diamond grinding wheel

  • 摘要: 为解决金刚石砂轮磨削钛合金时材料弹性模量低、弹性形变大等问题,从理论上对砂轮的受力状态进行分析。基于切屑分离准则和材料摩擦属性,构建钛合金磨削时的受力模型,并对单颗磨粒的受力状态进行有限元仿真。设计钛合金磨削加工试验,研究工艺参数变化对砂轮磨削力的影响规律。结果表明:砂轮磨削速度增加,磨削力逐渐降低;当进给速度和磨削深度增加时,磨削力增加。当磨削工艺参数改变时,砂轮的切向和法向磨削力的变化趋势大致相同,切向和法向磨削力的比值为0.29~0.37。且磨削力的理论值和试验值的变化趋势基本一致,二者相对误差的平均值在5%以内,验证了磨削力理论模型的正确性。

     

  • 图  1  工件和磨粒的模型

    Figure  1.  Model of workpiece and abrasive

    图  2  模型网格划分

    Figure  2.  Meshing of the model

    图  3  单磨粒磨削钛合金工件的应力应变仿真云图

    Figure  3.  Stress-strain simulation nephograms of single abrasive grinding titanium alloy workpiece

    图  4  切削中磨粒与工件接触示意图

    Figure  4.  Schematic diagram of contact between abrasive particle and workpiece during cutting

    图  5  工件材料变形和微元处受力示意图

    Figure  5.  Schematic diagram of workpiece material deformation and force at micro-element

    图  6  磨削试验设备

    Figure  6.  Grinding test equipment

    图  7  动态磨削力信号

    Figure  7.  Dynamic grinding force signals

    图  8  磨削力试验值和理论值对比

    Figure  8.  Comparison of experimental and theoretical grinding forces

    表  1  钛合金J-C本构模型参数

    Table  1.   J-C constitutive model parameters of titanium alloy

    参数取值
    A875
    B793
    C0.011
    n0.386
    m0.71
    下载: 导出CSV

    表  2  模型验证试验参数及磨削力值

    Table  2.   Model verification test parameters and grinding force values

    组别因素结果
    磨削速度
    vs
    (m·min−1)
    进给速度
    vw
    (mm·min−1)
    磨削
    深度
    h / μm
    法向力
    试验值
    FNS / N
    切向力
    试验值
    FTS / N
    116503035.410.1
    232503017.95.9
    324303015.15.4
    424703032.29.7
    524501014.54.5
    624505050.016.7
    下载: 导出CSV

    表  3  未知参数

    Table  3.   Unknown parameters

    参数取值
    k 3.667
    γ 22.981
    ξ 0.357
    下载: 导出CSV

    表  4  单因素试验参数

    Table  4.   Single factor test parameters

    组别磨削速度
    vs / (m·min−1)
    进给速度
    vw / (mm·min−1)
    磨削深度
    h / μm
    1165030
    2205030
    3245030
    4285030
    5325030
    6243030
    7244030
    8245030
    9246030
    10247030
    11245010
    12245020
    13245030
    14245040
    15245050
    下载: 导出CSV

    表  5  钛合金磨削时的磨削力试验值和理论值

    Table  5.   Experimental and theoretical values of grinding forces during titanium alloy grinding

    组别法向力
    试验值
    FNS / N
    切向力
    试验值
    FTS / N
    轴向力
    试验值
    FAS / N
    法向力
    理论值
    FNL / N
    切向力
    理论值
    FTL / N
    法向力
    相对误差
    δN / %
    切向力
    相对误差
    δT / %
    134.510.50.332.510.86.22.8
    229.29.70.627.59.26.25.4
    323.37.90.423.17.70.92.6
    420.56.80.321.17.02.82.9
    518.16.20.319.76.68.16.1
    615.25.30.716.25.46.21.9
    718.96.30.619.66.53.63.1
    823.37.90.423.17.70.92.6
    928.09.30.726.58.85.75.7
    1032.49.50.830.010.08.05.0
    1114.64.60.515.55.15.89.8
    1218.36.90.519.16.44.27.8
    1323.37.90.423.17.70.92.6
    1435.711.21.133.711.05.91.8
    1550.216.90.947.916.04.85.6
    平均值4.74.4
    下载: 导出CSV
  • [1] 许松, 李文斌. 摩擦系数对微铣削加工的影响 [J]. 工具技术,2018,52(4):116-119. doi: 10.3969/j.issn.1000-7008.2018.04.027

    XU Song, LI Wenbin. Influence of friction coefficient on micro-milling [J]. Tool Engineering,2018,52(4):116-119. doi: 10.3969/j.issn.1000-7008.2018.04.027
    [2] 徐九华. 钛合金切削磨削加工技术研究进展 [J]. 金刚石与磨料磨具工程,2020,40(5):1-4. doi: 10.3969/j.issn.1006-852X.2020.05.001

    XU Jiuhua. Research progress of titanium alloy cutting and grinding technology [J]. Diamond & Abrasives Engineering,2020,40(5):1-4. doi: 10.3969/j.issn.1006-852X.2020.05.001
    [3] 张永强, 余巍, 崔红力, 等. 钛合金阀门的应用及其选材 [J]. 流体机械,2013,41(9):44-48. doi: 10.3969/j.issn.1005-0329.2013.09.011

    ZHANG Yongqiang, YU Wei, CUI Hongli, et al. Application and material selection of titanium valves [J]. Fluid Machinery,2013,41(9):44-48. doi: 10.3969/j.issn.1005-0329.2013.09.011
    [4] 黄智, 董华章, 周振武, 等. 砂带磨削TC4磨削力数字建模及其预测 [J]. 表面技术,2018,47(9):259-267.

    HUANG Zhi, DONG Huazhang, ZHOU Zhenwu, et al. Modeling and prediction of grinding force on belt grinding TC4 [J]. Surface Technology,2018,47(9):259-267.
    [5] 梁巧云, 单坤, 李兆瑞, 等. 航发钛合金叶片金刚石砂带磨削的磨粒磨损研究 [J]. 金刚石与磨料磨具工程,2020,40(4):59-64.

    LIANG Qiaoyun, SHAN Kun, LI Zhaorui, et al. Investigation of grain wear in diamond abrasive belt grinding titanium alloy blade for aeroengine [J]. Diamond & Abrasives Engineering,2020,40(4):59-64.
    [6] 蔡卫星, 周伟华, 张峰. 21NiCrMo5H齿轮钢超声磨削力建模研究 [J]. 现代制造工程,2020(4):113-118.

    CAI Weixing, ZHOU Weihua, ZHANG Feng. Research on the grinding force model of ultrasonic grinding for 21NiCrMo5H [J]. Modern Manufacturing Engineering,2020(4):113-118.
    [7] 朱文博, 黎康顺, 朱欢欢, 等. 圆锥滚子球基面磨削力模型及实验研究 [J]. 中国机械工程,2020,31(6):679-687. doi: 10.3969/j.issn.1004-132X.2020.06.007

    ZHU Wenbo, LI Kangshun, ZHU Huanhuan, et al. Grinding force model and experimental study of tapered roller ball base surfaces [J]. China Mechanical Engineering,2020,31(6):679-687. doi: 10.3969/j.issn.1004-132X.2020.06.007
    [8] 王君明, 叶人珍, 汤漾平, 等. 55钢CBN砂轮平面磨削的磨削力模型研究 [J]. 金刚石与磨料磨具工程,2010,30(1):67-70,79. doi: 10.3969/j.issn.1006-852X.2010.01.017

    WANG Junming, YE Renzhen, TANG Yangping, et al. Research on the grinding force model of steel 55 during surface grinding with CBN wheel [J]. Diamond & Abrasives Engineering,2010,30(1):67-70,79. doi: 10.3969/j.issn.1006-852X.2010.01.017
    [9] 丁书召. 平磨磨削力的数学模型改进与实验 [J]. 机床与液压,2019,47(15):134-138. doi: 10.3969/j.issn.1001-3881.2019.15.029

    DING Shuzhao. Improvement and experiment of mathematical model of grinding force in flat grinding [J]. Machine Tool & Hydraulics,2019,47(15):134-138. doi: 10.3969/j.issn.1001-3881.2019.15.029
    [10] YAO X, BERMINGHAM M, WANG G, et al. FEA modelling of cutting force and chip formation in thermally assisted machining of Ti6Al4V alloy [J]. Materials Science Forum,2013,765:343-347. doi: 10.4028/www.scientific.net/MSF.765.343
    [11] AGARWAL S, RAO V P. Predictive modeling of force and power based on a new analytical undeformed chip thickness model in ceramic grinding [J]. International Journal of Machine Tools and Manufacture,2013,65:68-78. doi: 10.1016/j.ijmachtools.2012.10.006
    [12] 杨军, 李志鹏, 李伟, 等. 基于不同单颗磨粒模型的微细磨削力研究 [J]. 湖南大学学报(自然科学版),2018,45(8):54-62.

    YANG Jun, LI Zhipeng, LI Wei, et al. Study on micro-grinding force based on different single abrasive particle models [J]. Journal of Hunan University (Natural Sciences),2018,45(8):54-62.
    [13] 郎献军, 何玉辉, 唐进元, 等. 基于磨粒突出高度为瑞利分布的磨削力模型 [J]. 中南大学学报(自然科学版),2014,45(10):3386-3391.

    LANG Xianjun, HE Yuhui, TANG Jinyuan, et al. Grinding force model based on prominent height of abrasive submitted to Rayleigh distribution [J]. Journal of Central South University (Science and Technology),2014,45(10):3386-3391.
    [14] DURGUMAHANTI S P U, SINGH V, RAO V P. A new model for grinding force prediction and analysis [J]. International Journal of Machine Tools and Manufacture,2009,50(3):231-240.
    [15] 张黎明. 微晶云母陶瓷超声振动铣磨小孔出口崩边研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019.

    ZHANG Liming. Study on edge chipping at the small hole exit in rotary ultrasonic milling-grinding of microcrystalline mica ceramics [D]. Harbin: Harbin Institute of Technology, 2019.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  415
  • HTML全文浏览量:  140
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-22
  • 修回日期:  2021-11-15
  • 刊出日期:  2022-05-27

目录

    /

    返回文章
    返回