CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空航天铝合金构件装配孔钻削出口毛刺研究进展

王笑时 杨国林 董志刚 康仁科

王笑时, 杨国林, 董志刚, 康仁科. 航空航天铝合金构件装配孔钻削出口毛刺研究进展[J]. 金刚石与磨料磨具工程, 2022, 42(4): 385-409. doi: 10.13394/j.cnki.jgszz.2021.0095
引用本文: 王笑时, 杨国林, 董志刚, 康仁科. 航空航天铝合金构件装配孔钻削出口毛刺研究进展[J]. 金刚石与磨料磨具工程, 2022, 42(4): 385-409. doi: 10.13394/j.cnki.jgszz.2021.0095
WANG Xiaoshi, YANG Guolin, DONG Zhigang, KANG Renke. Research progress on exit burr in drilling assembly hole of aerospace aluminum alloy components[J]. Diamond & Abrasives Engineering, 2022, 42(4): 385-409. doi: 10.13394/j.cnki.jgszz.2021.0095
Citation: WANG Xiaoshi, YANG Guolin, DONG Zhigang, KANG Renke. Research progress on exit burr in drilling assembly hole of aerospace aluminum alloy components[J]. Diamond & Abrasives Engineering, 2022, 42(4): 385-409. doi: 10.13394/j.cnki.jgszz.2021.0095

航空航天铝合金构件装配孔钻削出口毛刺研究进展

doi: 10.13394/j.cnki.jgszz.2021.0095
详细信息
    作者简介:

    王笑时,男,1997年生。主要研究方向:精密加工技术与设备。E-mail: wangxs0102@163.com

    通讯作者:

    康仁科,男,1962 年生,教授。主要研究方向:精密与超精密加工、特种加工等。E-mail:kangrk@dlut.edu.cn

  • 中图分类号: TG58; TG52; F416.41

Research progress on exit burr in drilling assembly hole of aerospace aluminum alloy components

  • 摘要: 航空航天制造业中存在大量的铝合金装配孔加工需求。装配孔主要通过钻削加工实现,加工中存在铝合金出口毛刺过大的问题。出口毛刺直接影响工件的精度、抗疲劳强度、装配性能,去毛刺工序会极大地增加工时和成本。因此有必要对铝合金装配孔钻削出口毛刺进行研究,实现对出口毛刺的控制。从铝合金钻削出口毛刺的类型和测量方法、形成机理和高度预测以及毛刺控制方法等方面进行了系统性的论述,以期为铝合金钻削加工出口毛刺的研究提供帮助。

     

  • 图  1  铝合金钻削典型出口毛刺[9]

    Figure  1.  Typical exit burr of aluminum alloy drilling[9]

    图  2  出口毛刺类型[6]

    Figure  2.  Exit burr type[6]

    图  3  毛刺形态试验结果[21]

    Figure  3.  Burr shape results[21]

    图  4  出口毛刺形态[25]

    Figure  4.  Exit burr shape[25]

    图  5  出口毛刺类型和形态[27]

    Figure  5.  Exit burr type and shape[27]

    图  6  毛刺形状和主要特征参数[6]

    Figure  6.  Burr shape and main characteristic parameters[6]

    图  7  毛刺几何形状特征[28]

    Figure  7.  Geometric characteristics of burrs[28]

    图  8  使用光学CMM测量毛刺特征[28]

    Figure  8.  Measurement of burr characteristics using optical CMM[28]

    图  9  形状激光显微镜及测量结果[33]

    Figure  9.  Shape laser microscope and measurement results[33]

    图  10  基于激光三角测量系统的毛刺非接触测量[15]

    Figure  10.  Non contact measurement of burr based on laser triangulation system[15]

    图  11  线激光毛刺测量装置[35]

    Figure  11.  Line laser burr measuring device[35]

    图  12  出口毛刺形成过程[8]

    Figure  12.  Formation process of exit burr[8]

    图  13  出口毛刺有限元仿真结果[47]

    Figure  13.  Finite element simulation results of exit burr[47]

    图  14  层间间隙与层间毛刺关系[57]

    Figure  14.  Relationship between interlayer gap and interlayer burr[57]

    图  15  预紧力与层间毛刺高度间关系[57]

    Figure  15.  Relationship between preload and interlayer burr height[57]

    图  16  模拟值与实测值结果[62]

    Figure  16.  Simulated and measured results[62]

    图  17  毛刺高度的试验结果和预测结果的比较[55]

    Figure  17.  Comparison of the experimental and predicted results for the burr height[55]

    图  18  出口毛刺高度与切削参数间关系[69]

    Figure  18.  Relationship between exit burr height and cutting parameters[69]

    图  19  不同参数下出口毛刺情况[27]

    Figure  19.  Exit burr under different parameters[27]

    图  20  不同刀具参数、加工参数下铝合金出口毛刺形态[63]

    Figure  20.  Exit burr morphology of aluminum alloy under different tool parameters and machining parameters[63]

    图  21  麻花钻结构 [78]

    Figure  21.  Twist drill structure[78]

    图  22  3种抑制出口毛刺的结构[79]

    Figure  22.  Three structures for suppressing outlet burr[79]

    图  23  修改钻头结构 (l3=2 mm,k2=2°)[81]

    Figure  23.  Modified drill (l3=2 mm,k2=2°)[81]

    图  24  刀具优化前后毛刺高度对比[81]

    Figure  24.  Comparison of burr height before and aftertool optimization[81]

    图  25  钻头刃型[86]

    Figure  25.  Bit edge type[86]

    图  26  研制钻头[86]

    Figure  26.  Development bits[86]

    图  27  不同刀具产生毛刺对比[86]

    Figure  27.  Comparison of burr produced by different cutting tools[86]

    图  28  刀具结构[87]

    Figure  28.  Tool structure[87]

    图  29  试验刀具[87]

    Figure  29.  Test tool[87]

    图  30  试验结果[87]

    Figure  30.  Experimental result[87]

    图  31  刀具结构[88]

    Figure  31.  Tool structure[88]

    图  32  研制阶梯钻[90]

    Figure  32.  Development of step drill[90]

    图  33  振动制孔原理[98]

    Figure  33.  Principle of ultrasonic vibration drilling[98]

    图  34  超声振动钻孔原理图[42]

    Figure  34.  Schematic diagram of ultrasonic vibration drilling[42]

    图  35  不同切削参数下超声振动钻削和普通钻削毛刺高度对比[33]

    Figure  35.  Burr height of ultrasonic vibration drilling and ordinary drilling under different cutting parameters[33]

    图  36  超声刀柄和超声电源[8]

    Figure  36.  Ultrasonic tool holder and ultrasonic power supply[8]

    图  37  旋转超声钻削和普通钻削下毛刺高度对比[8]

    Figure  37.  Comparison of drilling burr height between rotary ultrasonic drilling and general drilling[8]

    图  38  普通钻削与低频钻削出口毛刺对比[64]

    Figure  38.  Comparison of outlet burr between ordinary drilling and low frequency drilling[64]

    图  39  振动辅助加工[64]

    Figure  39.  Vibration-assisted machining [64]

    图  40  振动钻削出口毛刺高度[97]

    Figure  40.  Vibration drilling exit burr height[97]

    图  41  低温钻削试验装置[102]

    Figure  41.  Cryogenic cooling drilling experimental setup[102]

    图  42  压紧力对出口毛刺高度影响[44]

    Figure  42.  Influence of pressing force on exit burr height[44]

    图  43  可调预压紧力钻孔系统[106]

    Figure  43.  Adjustable preload drilling system[106]

    图  44  不同压紧力下毛刺形貌[106]

    Figure  44.  Burr morphology under different pressing forces[106]

    表  1  毛刺高度预测研究进展

    Table  1.   Research progress of burr height prediction

    研究学者预测方法预测结果
    吴丹等[58]试验获得轴向力经验公式,有限元法预测毛刺生成初始位置,能量法建立毛刺高度理论模型误差<30%
    胡力闯等[59]试验建立钻削力经验公式,结合经典薄板弯曲理论和能量法建模,考虑钻孔位置对工件刚性和毛刺高度的影响误差<13%
    WANG等[61]轴向定位法获得了内、外切削点,确定工作角度、切削力等参数,根据形成机理进行理论建模误差1.96%
    CHANG等[62]只有切削力的正向部分和工件的弹性变形回弹有助于毛刺的形成,由此建立切削力模型和毛刺高度模型误差<10%
    MANDRA等[54]将钻削轴向力与刀具磨损引起的摩擦力相结合,建立了基于的受力模型,利用力做功与材料变形之间的能量平衡建模误差<30%
    LI等[64]基于毛刺形成的机理、材料的变形机制、运动学模型以及受力分析建立毛刺高度模型误差<8%
    周越等[66]引入BN和正则化技术,提高训练效率精度,基于蚁群算法的启发式整体调优算法,完成模型的全局优化,预测毛刺高度误差9.34%
    GÖKÇE等[55]使用试验数据预测响应,使用神经拟合工具评估实验数据,使用前馈−反向传播执行ANN模型预测成功率为99.6%
    鲁琦渊[33]由试验结果,根据最小二乘法,拟合出毛刺高度回归方程误差15.76%
    ABDELHAFEEZ等[69]由响应曲面法建立毛刺高度拟合方程,并分析各参数显著性实测值、预测值吻合较好
    下载: 导出CSV
  • [1] 刘科. 铝合金材料的应用及其加工成形技术 [J]. 智能城市,2019,5(14):212-213.

    LIU Ke. Application and forming technology of aluminum alloy materials [J]. Intelligent City,2019,5(14):212-213.
    [2] 邓运来, 张新明. 铝及铝合金材料进展 [J]. 中国有色金属学报,2019,29(9):2115-2141. doi: 10.19476/j.ysxb.1004.0609.2019.09.14

    DENG Yunlai, ZHANG Xinming. Progress of aluminum and aluminum alloy materials [J]. The Chinese Journal of Nonferrous Metals,2019,29(9):2115-2141. doi: 10.19476/j.ysxb.1004.0609.2019.09.14
    [3] 范玉青. 现代飞机制造技术 [M]. 北京: 北京航空航天大学出版社, 2001.

    FAN Yuqing. Modern aircraft manufacturing technology [M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2001.
    [4] 朱兆聚. 航空异质构件钻削刀具温度特性及制孔关键技术研究 [D]. 济南: 山东大学, 2019.

    ZHU Zhaoju. Research on temperature characteristics of drilling tools for aviation heterogeneous components and key technologies of drilling [D]. Jinan: Shandong University, 2019.
    [5] 刘姿. 飞机壁板叠层材料精密制孔工艺研究 [D]. 南京: 南京航空航天大学, 2015.

    LIU Zi. Research on precision hole making technology of aircraft wall panel laminated material [D] . Nanjing: Nanjing University of Aeronautics and Astronautics, 2015.
    [6] 石贵峰. 钻削毛刺形成机理及其控制技术研究 [D]. 镇江: 江苏大学, 2016.

    SHI Guifeng. Research on formation mechanism and control technology of drilling burr [D]. Zhenjiang: Jiangsu University, 2016.
    [7] RIMPAULT X, CHATELAIN J F, KLEMBERG-SAPIEHA J E, et al. Burr height monitoring while drilling CFRP/titanium/aluminium stacks [J]. Mechanics & Industry,2017,18(1):114.
    [8] 胡力闯. 机器人旋转超声钻削铝合金叠层构件毛刺特性研究 [D]. 南京: 南京理工大学, 2020.

    HU Lichuang. Study on burr characteristics of robot rotary ultrasonic drilling aluminum alloy laminated components [D]. Nanjing: Nanjing University of Technology, 2020.
    [9] BAHCE E, ÖZEMIR B. Burr measurement method based on burr surface area [J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2020,8(4):1-10.
    [10] ABDELHAFEEZ A M, SOO S L, ASPINWALL D K, et al. The influence of burr forma tion and feed rate on the fatigue life of drilled titanium and aluminium alloys used in aircraft manufacture [J]. CIRP Annals - Manufacturing Technology,2018,67(1):103-108. doi: 10.1016/j.cirp.2018.03.013
    [11] 康仁科, 杨国林, 董志刚, 等. 飞机装配中的先进制孔技术与装备 [J]. 航空制造技术,2016(10):16-24.

    KANG Renke, YANG Guolin, DONG Zhigang, et al. Advanced hole making technology and equipment in aircraft assembly [J]. Aeronautical Manufacturing Technology,2016(10):16-24.
    [12] 罗蒙. 金属切削过程中毛刺形成机理及控制方法的研究 [D]. 上海: 上海交通大学, 2007.

    LUO Meng. Study on burr formation mechanism and control method in metal cutting process [D]. Shanghai: Shanghai Jiaotong University, 2007.
    [13] 李晓峰. 铝合金与钛合金超声振动辅助钻削工艺研究 [D]. 大连: 大连理工大学, 2016.

    LI Xiaofeng. Research on ultrasonic vibration assisted drilling technology of aluminum alloy and titanium alloy [D]. Dalian: Dalian University of Technology, 2016.
    [14] 沈宇峰, 何幸保, 刘媛媛. 金属切削毛刺形成与控制技术研究及发展 [J]. 工具技术,2018,52(9):10-14. doi: 10.3969/j.issn.1000-7008.2018.09.014

    SHEN Yufeng, HE Xingbao, LIU Yuanyuan. Research and development of burr formation and control technology in metal cutting [J]. Tool Engineering,2018,52(9):10-14. doi: 10.3969/j.issn.1000-7008.2018.09.014
    [15] AURICH J C, DORNFELD D, ARRAZOLA P J, et al. Burrs—Analysis, control and removal [J]. CIRP Annals-Manufacturing Technology,2009,58(2):519-542. doi: 10.1016/j.cirp.2009.09.004
    [16] 吴宇锋. 钛合金毛刺生成机理及尺寸规律研究 [D]. 重庆: 重庆大学, 2018.

    WU Yufeng. Study on burr formation mechanism and size law of titanium alloy [D]. Chongqing: Chongqing University, 2018.
    [17] 奥岛启贰, 人见胜人. 切削におけるがえりの现象について [J]. 精密机械, 1958, 24(8): 470-475.

    OKUSHIMA Ryuji, HITOMI Katsundo. About the phenomenon of the burrs in cutting [J]. Precision Machinery, 1958, 24 (8): 470-475.
    [18] GILLESPIE L K, BLOTTER P T. The formation properties of machining burrs [J]. ASME Journal of Engineering for Industry,1976,98(1):66-74. doi: 10.1115/1.3438875
    [19] NAKAYAMA K, ARAI M. Burr formation in metal cutting [J]. CIRP Annals-Manufacturing Technology,1987,36(1):33-36. doi: 10.1016/S0007-8506(07)62547-5
    [20] 王贵成. 金属切削毛刺 [M]. 吉林: 吉林科学技术出版社, 1997.

    WANG Guicheng. Metal cutting burr [M]. Jilin: Jilin Science and Technology Press, 1997.
    [21] 朱云明, 王磊, 王贵成. 钻削毛刺的形成与分析模型 [J]. 科学技术与工程,2010,10(30):7417-7421. doi: 10.3969/j.issn.1671-1815.2010.30.009

    ZHU Yunming, WANG Lei, WANG Guicheng. Formation and analysis model of drilling burr [J]. Science Technology and Engineering,2010,10(30):7417-7421. doi: 10.3969/j.issn.1671-1815.2010.30.009
    [22] 徐国勇. 钻削加工中交叉孔毛刺形成机理及其控制技术研究 [D]. 镇江: 江苏大学, 2019.

    XU Guoyong. Research on formation mechanism and control technology of cross hole burr in drilling [D]. Zhenjiang: Jiangsu University, 2019.
    [23] 马文瑞. 碳纤维复合材料/铝合金叠层构件超声振动辅助钻削技术研究 [D]. 南京: 南京理工大学, 2018.

    MA Wenrui. Research on ultrasonic vibration assisted drilling technology for carbon fiber composite/aluminum alloy laminated members [D]. Nanjing: Nanjing University of technology, 2018.
    [24] 肖曦辉, 郭迎福, KIM Hochan, 等. 钛合金钻削加工出口毛刺研究进展 [J]. 工具技术,2021,55(4):3-8. doi: 10.3969/j.issn.1000-7008.2021.04.001

    XIAO Xihui, GUO Yingfu, KIM Hochan, et al. Research Progress on export burr of titanium alloy drilling [J]. Tool Engineering,2021,55(4):3-8. doi: 10.3969/j.issn.1000-7008.2021.04.001
    [25] 黄娟. 微细切削毛刺的形成机理及其表征方法研究 [D]. 镇江: 江苏大学, 2019.

    HUANG Juan. Study on formation mechanism and characterization method of micro cutting burr [D]. Zhenjiang: Jiangsu University, 2019.
    [26] STEIN J, DORNFELD D. Influence of workpiece exit angle on burr formation in drilling intersecting holes [J]. Transactions of the North American Manufacturing Research Institution of SME, 1996: 39-44.
    [27] 向胜华. 钻削铝合金薄板过程中工艺参数对切屑与制孔形貌特征影响分析 [J]. 制造技术与机床,2017(11):132-136, 140.

    XIANG Shenghua. Analysis on the influence of process parameters on chip and hole making morphology during drilling aluminum alloy sheet [J]. Manufacturing Technology & Machine Tool,2017(11):132-136, 140.
    [28] PULNÝ L, DE CHIFFRE L, PÍŠKA M, et al. Hole quality and burr reduction in drilling aluminium sheets [J]. CIRP Journal of Manufacturing Science and Technology,2012,5(2):102-107. doi: 10.1016/j.cirpj.2012.03.005
    [29] JIN S Y, PRAMANIK A, BASAK A K, et al. Burr formation and its treatments-a review [J]. The International Journal of Advanced Manufacturing Technology,2020, 107(5/6):107.
    [30] 岳玮. 精密切削加工表面完整性及评价方法研究 [D]. 镇江: 江苏大学, 2016.

    YUE Wei. Research on surface integrity and evaluation method of precision machining [D]. Zhenjiang: Jiangsu University, 2016.
    [31] KO S. Development of effective measurement method for burr geometry [J]. Journal of the Korean Society for Precision Engineering,2003,20(6):81-87.
    [32] NAKAO Y, WATANABE Y. Measurements and evaluations of drilling burr profile [J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture,2006,220(4):513-523.
    [33] 鲁琦渊. 机器人旋转超声钻削CFRP/铝合金叠层材料的实验研究 [D]. 南京: 南京理工大学, 2019.

    LU Qiyuan. Experimental study on robot rotary ultrasonic drilling of CFRP/aluminum alloy laminated materials [D]. Nanjing: Nanjing University of Technology, 2019.
    [34] ISLAM A, DWIVEDI V K. Effect of drilling speed, bit size and cooling medium on the burr structure for mild steel [J]. Materials Today: Proceedings,2020,28:1407-1411. doi: 10.1016/j.matpr.2020.04.812
    [35] 梁杰, 张康宁, 邱益. 基于线激光位移传感器的孔毛刺测量与评价 [J]. 哈尔滨工业大学学报,2022,54(1):156-162. doi: 10.11918/202108114

    LIANG Jie, ZHANG Kangning, QIU Yi. Measurement and evaluation of burr based on linear laser displacement sensor [J]. Journal of Harbin Institute of Technology,2022,54(1):156-162. doi: 10.11918/202108114
    [36] 曲海军. 金属切削毛刺形成的数值模拟及控制技术研究 [D]. 镇江: 江苏大学, 2011.

    QU Haijun. Research on numerical simulation and control technology of burr formation in metal cutting [D]. Zhenjiang: Jiangsu University, 2011.
    [37] SOKOLOWSKI A. On burr height estimation based on axial drilling force [J]. Journal of Achievements in Materials and Manufacturing Engineering,2010,43:734-742.
    [38] MONDAL N, SARDAR B S, HALDER R N, et al. Observation of drilling burr and finding out the condition for minimum burr formation [J]. International Journal of Manufacturing Engineering, 2014,1:93.
    [39] COSTA E S, SILVA M B, MACHADO A R, et al. Burr produced on the drilling process as a function of tool wear and lubricant-coolant conditions [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2009,31(1):57-63. doi: 10.1590/S1678-58782009000100009
    [40] MONDAL N, DAS S, BANERJEE T, et al. Experimental study on drilling burr formation minimization and parameters optimization using BBO algorithm [C]. Materials Today: Proceedings, 2021.
    [41] 陈俊平, 朱云明, 王贵成, 等. 金属切削毛刺专家系统的研究进展 [J]. 机械设计与制造,2012(2):259-261. doi: 10.3969/j.issn.1001-3997.2012.02.100

    CHEN Junping, ZHU Yunming, WANG Guicheng, et al. Research progress of metal cutting burr expert system [J]. Machinery Design & Manufacture,2012(2):259-261. doi: 10.3969/j.issn.1001-3997.2012.02.100
    [42] 李哲, 杨志波, 王爱春, 等. 八面钻超声振动钻削钛合金出口毛刺形成机理 [J]. 宇航材料工艺,2020,50(1):79-89. doi: 10.12044/j.issn.1007-2330.2020.01.012

    LI Zhe, YANG Zhibo, WANG Aichun, et al. Mechanism of burr formation in ultrasonic vibration drilling of titanium alloy with octahedral drill [J]. Aerospace Materials & Technology,2020,50(1):79-89. doi: 10.12044/j.issn.1007-2330.2020.01.012
    [43] 罗育果, 袁信满, 张也, 等. 飞机叠层材料精密制孔工艺研究 [J]. 制造技术与机床,2019(9):122-126.

    LUO Yuguo, YUAN xinman, ZHANG Ye, et al. Study on precision hole making technology of aircraft laminated materials [J]. Manufacturing Technology & Machine Tool,2019(9):122-126.
    [44] 袁定新, 雷斯聪, 赵维刚, 等. 航天铝合金薄板制孔毛刺高度的试验研究 [J]. 制造技术与机床,2018(6):127-130.

    YUAN Dingxin, LEI Sicong, ZHAO Weigang, et al. Experimental study on burr height in hole making of aerospace aluminum alloy sheet [J]. Manufacturing Technology & Machine Tool,2018(6):127-130.
    [45] 莫立扬, 甄圣亮, 查长礼, 等. 基于ABAQUS的钻削毛刺形成及控制分析 [J]. 科技风,2019(33):137.

    MO Liyang, ZHEN Shengliang, CHA Changli, et al. Analysis of burr formation and control in drilling based on ABAQUS [J]. Technology Wind,2019(33):137.
    [46] 徐晓霞, 胡永祥, 姚振强. 层叠铝合金钻削层间毛刺试验研究 [J]. 组合机床与自动化加工技术,2012(12):109-112. doi: 10.3969/j.issn.1001-2265.2012.12.030

    XU Xiaoxia, HU Yongxiang, YAO Zhenqiang. Experimental study on drilling interlayer burr of laminated aluminum alloy [J]. Modular Machine Tool & Automatic Manufacturing Technique,2012(12):109-112. doi: 10.3969/j.issn.1001-2265.2012.12.030
    [47] 刘庆伦, 冯嫦. 6063铝合金钻孔仿真与毛刺形成机理研究 [J]. 装备制造技术,2016(11):134-135, 140. doi: 10.3969/j.issn.1672-545X.2016.11.044

    LIU Qinglun, FENG Chang. Study on drilling simulation and burr formation mechanism of 6063 aluminum alloy [J]. Equipment Manufacturing Technology,2016(11):134-135, 140. doi: 10.3969/j.issn.1672-545X.2016.11.044
    [48] 王威. 多参数联合作用的单向压紧自动化制孔工艺研究 [D]. 南京: 南京航空航天大学, 2020.

    WANG Wei. Research on automatic hole making process of unidirectional pressing under the combined action of multiple parameters [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020.
    [49] 王昌赢, 邱坤贤, 魏莹莹, 等. PTFE/CFRP/铝合金叠层材料钻削试验研究 [J]. 航空制造技术,2015(10):90-93, 97.

    WANG Changying, QIU Kunxian, WEI Yingying, et al. Experimental study on drilling of PTFE/CFRP/aluminum alloy laminated material [J]. Aeronautical Manufacturing Technology,2015(10):90-93, 97.
    [50] DEY B, MONDAL N, MONDAL S. Experimental study to minimize the burr formation in drilling process with artifical neural networks (ANN) analysis [J]. IOP Conference Series: Materials Science and Engineering, 2018, 377(1): 012120.
    [51] KAMBOJ A, KUMAR S, SINGH H. Burr height and hole diameter error minimization in drilling of AL6063/15%/SiC composites using HSS step drills [J]. Journal of Mechanical Science and Technology,2015,29(7):2837-2846. doi: 10.1007/s12206-015-0612-1
    [52] KUNDU S, DAS S, SAHA P P. Optimization of drilling parameters to minimize burr by providing back-up support on aluminium alloy [J]. Procedia Engineering,2014,97:230-240. doi: 10.1016/j.proeng.2014.12.246
    [53] 林捷. 金属切削毛刺控制技术研究 [J]. 信息记录材料,2020,21(2):133-134.

    LIN Jie. Research on burr control technology in metal cutting [J]. Information Recording Materials,2020,21(2):133-134.
    [54] MANDRA A M, JIANG J F, XI F F. A new burr formation model for drilling with tool wear [J]. The International Journal of Advanced Manufacturing Technology,2021,116(5/6):1437-1450. doi: 10.1007/s00170-021-07031-4
    [55] GÖKÇE H, BIBERCI M A. Investigation of thrust force, drill bit temperature and burr height in the drilling of aluminum alloy used in ammunition wing drive systems [J]. Experimental Techniques,2021, 46(4):1-15.
    [56] PARDO A, CSEKE A, HEINEMANN R, et al. The effect of interlayer gap width on burr formation in drilling of aluminium-aluminium aerospace stacks [J]. The International Journal of Advanced Manufacturing Technology,2019,104(5/6/7/8):3035-3043. doi: 10.1007/s00170-019-04202-2
    [57] TIAN W, HU J, LIAO W, et al. Formation of interlayer gap and control of interlayer burr in dry drilling of stacked aluminum alloy plates [J]. Chinese Journal of Aeronautics,2016,29(1):283-291. doi: 10.1016/j.cja.2015.11.002
    [58] 吴丹, 黄诗剑, 高雨浩, 等. 铝合金叠层板钻削层间毛刺高度预测模型 [J]. 清华大学学报(自然科学版),2017,57(6):591-596, 603.

    WU Dan, HUANG Shijian, GAO Yuhao, et al. Prediction model of interlayer burr height in drilling aluminum alloy laminates [J]. Journal of Tsinghua University (Science and Technology),2017,57(6):591-596, 603.
    [59] 胡力闯, 郑侃, 董松, 等. 机器人旋转超声钻削铝合金叠层构件毛刺特性 [J]. 北京航空航天大学学报,2020,46(2):407-413.

    HU Lichuang, ZHENG Kan, DONG Song, et al. Burr characteristics of robot rotary ultrasonic drilling aluminum alloy laminated components [J]. Journal of Beijing University of Aeronautics and Astronautics,2020,46(2):407-413.
    [60] HU Y, SONG Y, LI Y, et al. An analytical model to predict interfacial burr height for metal stack drilling [J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2019,233(1):99-108. doi: 10.1177/0954405417708224
    [61] WANG H L, LI Q Y, ZHANG P K. Calculating of the exit burr in low frequency axial vibration drilling [J]. Advanced Materials Research, 2013,2428(706/707/708):123.
    [62] CHANG S S F, BONE G M. Burr height model for vibration assisted drilling of aluminum 6061-T6 [J]. Precision Engineering,2009,34(3):369-375.
    [63] HASSAN M H, ABDULLAH J, MAHMUD A S, et al. Burr height as quality indicator in single shot drilling of stacked CFRP/Aluminium composite [J]. Key Engineering Materials, 2017,744:327-331.
    [64] LI S, ZHANG D, LIU C, et al. Exit burr height mechanistic modeling and experimental validation for low-frequency vibration-assisted drilling of aluminum 7075-T6 alloy [J]. Journal of Manufacturing Processes, 2020, 56: 350-361.
    [65] 周越. 基于深度神经网络的航空装配制孔毛刺预测与工艺优化 [D]. 南京: 南京航空航天大学, 2019.

    ZHOU Yue. Burr prediction and process optimization of aviation assembly hole making based on depth neural network [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.
    [66] 周越, 田威, 廖文和, 等. 基于卷积神经网络的制孔出口毛刺预测方法 [J]. 机械制造与自动化,2020,49(2):64-68. doi: 10.19344/j.cnki.issn1671-5276.2020.02.016

    ZHOU Yue, TIAN Wei, LIAO Wenhe, et al. Prediction method of burr at hole making outlet based on convolution neural network [J]. Machine Building & Automation,2020,49(2):64-68. doi: 10.19344/j.cnki.issn1671-5276.2020.02.016
    [67] 许敏俊, 刘世民, 沈慧, 等. 数字孪生驱动下的弱刚性钻削毛刺控制 [J/OL]. 计算机集成制造系统, 2021: 1-18.

    XU Minjun, LIU Shimin, SHEN Hui, et al. Burr control of weakly rigid drilling driven by digital twin [J/OL] . Computer Integrated Manufacturing System, 2021: 1-18.
    [68] THAKRE A A, SONI S. Modeling of burr size in drilling of aluminum silicon carbide composites using response surface methodology [J]. Engineering Science and Technology, an International Journal,2016,19(3):1199-1205. doi: 10.1016/j.jestch.2016.02.007
    [69] ABDELHAFEEZ A M, SOO S L, ASPINWALL D K, et al. Burr formation and hole quality when drilling titanium and aluminium alloys [J]. Procedia CIRP,2015,37:230-235. doi: 10.1016/j.procir.2015.08.019
    [70] 徐支凤. 机械零件毛刺去除工艺现状 [J]. 机床与液压,2010,38(8):111-113, 110. doi: 10.3969/j.issn.1001-3881.2010.08.040

    XU Zhifeng. Present situation of burr removal process of mechanical parts [J]. Machine Tool & Hydraulics,2010,38(8):111-113, 110. doi: 10.3969/j.issn.1001-3881.2010.08.040
    [71] 姜俊, 舒鑫, 雍建华, 等. 金属切削毛刺形成与控制技术研究进展 [J]. 工具技术,2021,55(7):3-10. doi: 10.3969/j.issn.1000-7008.2021.07.001

    JIANG Jun, SHU Xin, YONG Jianhua, et al. Research progress of metal cutting burr formation and control technology [J]. Tool Engineering,2021,55(7):3-10. doi: 10.3969/j.issn.1000-7008.2021.07.001
    [72] 苏海, 马兴海, 王娟, 等. 运载火箭铝合金叠层壁板自动化制孔工艺对钻孔毛刺影响的研究 [J]. 航空精密制造技术,2017,53(1):26-29, 59. doi: 10.3969/j.issn.1003-5451.2017.01.006

    SU Hai, MA Xinghai, WANG Juan, et al. Study on the influence of automatic drilling process of aluminum alloy laminated wall panel of launch vehicle on drilling burr [J]. Aviation Precision Manufacturing Technology,2017,53(1):26-29, 59. doi: 10.3969/j.issn.1003-5451.2017.01.006
    [73] 于渊, 臧建新, 朱振江, 等. 铝合金夹层结构自动钻铆工艺参数研究 [J]. 机械工程与自动化,2020(2):155-156. doi: 10.3969/j.issn.1672-6413.2020.02.061

    YU Yuan, ZANG Jianxin, ZHU Zhenjiang, et al. Study on automatic drilling and riveting process parameters of aluminum alloy sandwich structure [J]. Mechanical Engineering & Automation,2020(2):155-156. doi: 10.3969/j.issn.1672-6413.2020.02.061
    [74] DIRHAMSYAH M, TADJUDDIN M, UDINK A, et al. The effect of cutting speed on dimension accuracy and burr development of high-speed micro drill proses on aluminium [J]. IOP Conference Series: Materials Science and Engineering, 2019, 523(1): 012074.
    [75] GAITONDE V N, KARNIK S R, ACHYUTHA B T, et al. Taguchi optimization in drilling of AISI 316L stainless steel to minimize burr size using multi-performance objective based on membership function [J]. Journal of Materials Processing Technology,2007,202(1):374-379.
    [76] BAHCE E, OZDEMIR B. Investigation of the burr formation during the drilling of free-form surfaces in al 7075 alloy [J]. Journal of Materials Research and Technology,2019,8(5):4198-4298. doi: 10.1016/j.jmrt.2019.07.028
    [77] 雷鸣宇. 用于高强度钢加工的钻头结构参数优化 [D]. 西安: 西安工业大学, 2018.

    LEI Mingyu. Optimization of structural parameters of drill bit for machining high strength steel [D]. Xi'an: Xi'an University of Technology, 2018.
    [78] 张文盟. TC4钛合金钻削刀具几何参数优化 [D]. 太原: 太原理工大学, 2019.

    ZHANG Wenmeng. Optimization of geometric parameters of TC4 titanium alloy drilling tool [D]. Taiyuan: Taiyuan University of Technology, 2019.
    [79] 郭伟民. 可抑制毛刺的钻头结构 [J]. 制造技术与机床,2017(10):85-88. doi: 10.19287/j.cnki.1005-2402.2017.10.018

    GUO Weimin. Bit structure capable of suppressing burr [J]. Manufacturing Technology & Machine Tool,2017(10):85-88. doi: 10.19287/j.cnki.1005-2402.2017.10.018
    [80] DORNFELD D A, KIM J S, DECHOW H, et al. Drilling burr formation in titanium alloy, Ti−6AI−4V [J]. CIRP Annals- Manufacturing Technology, 1999, 48(1): 73-76.
    [81] FRANCZYK E, SLUSARCZYK L, ZEBALA W. Drilling burr minimization by Changing Drill Geometry [J]. Materials, 2020, 13(14): 3207.
    [82] 施志辉, 冯立伟. 麻花钻三维建模及切削刃几何参数研究 [J]. 机械制造,2017,55(6):62-65. doi: 10.3969/j.issn.1000-4998.2017.06.018

    SHI Zhihui, FENG Liwei. 3D modeling of twist drill and Study on geometric parameters of cutting edge [J]. Machinery,2017,55(6):62-65. doi: 10.3969/j.issn.1000-4998.2017.06.018
    [83] 曾腾辉. 不同刃口形貌的S钻尖麻花钻钻削性能研究 [J]. 机械工程师,2020(10):31-34.

    ZENG Tenghui. Study on drilling performance of S drill point twist drill with different edge morphology [J]. Mechanical Engineer,2020(10):31-34.
    [84] LIANG W, XU J, REN W, et al. Study on the influence of tool point angle on ultrasonic vibration–assisted drilling of titanium alloy [J]. The International Journal of Advanced Manufacturing Technology,2019,105(1/2/3/4):1069-1082. doi: 10.1007/s00170-019-04231-x
    [85] 郭伟民, 李泰祥, 李义龙, 等. 二重顶角钻头抑制钻出毛刺的应用研究 [J]. 机床与液压, 2017, 45(8): 43-45.

    GUO Weimin, LI Taixiang, LI Yilong, et al. Application Research on burr suppression by double top angle bit [J]. Machine Tool & Hydraulics. 2017, 45(8): 43-45.
    [86] ZHU Z, GUO K, SUN J, et al. Evaluation of novel tool geometries in dry drilling aluminium 2024−T351/titanium Ti6Al4V stack [J]. Journal of Materials Processing Technology,2018,259:270-281. doi: 10.1016/j.jmatprotec.2018.04.044
    [87] REZENDE B A, SILVEIRA M L, VIEIRA L M G. Investigation on the effect of drill geometry and pilot holes on thrust force and burr height when drilling an aluminium/PE sandwich material [J]. Materials,2016,9(9):774. doi: 10.3390/ma9090774
    [88] QIU X Y, YU Z, LI C P, et al. Influence of main cutting edge structure on hole defects in CFRP/titanium alloy stacks drilling [J]. Journal of Manufacturing Processes,2021,69:503-513. doi: 10.1016/j.jmapro.2021.07.061
    [89] KO S L, CHANG J E, YANG G E. Burr minimizing scheme in drilling [J]. Journal of Materials Processing Technology,2003,140(1/2/3):237-242. doi: 10.1016/S0924-0136(03)00719-2
    [90] JIA Z Y, ZHANG C, WANG F J, et al. An investigation of the effects of step drill geometry on drilling induced delamination and burr of Ti/CFRP stacks [J]. Composite Structures,2020,235:111786.
    [91] 张观福, 谢安, 高帅. 钻头钻尖角对铝合金材料加工清洁度影响分析 [J]. 时代汽车,2019(3):152-153. doi: 10.3969/j.issn.1672-9668.2019.03.065

    ZHANG Guanfu, XIE An, GAO Shuai. Analysis of the influence of drill tip angle on the machining cleanliness of aluminum alloy materials [J]. Auto Time,2019(3):152-153. doi: 10.3969/j.issn.1672-9668.2019.03.065
    [92] 刘凯. 铝/钛叠层结构钻铰锪一体化制孔刀具开发与工艺参数优化 [D]. 济南: 山东大学, 2018.

    LIU Kai. Development of drilling, reaming and spot facing integrated hole making tool with aluminum/titanium laminated structure and optimization of process parameters [D]. Jinan: Shandong University, 2018.
    [93] 王彬杰. 铝合金加工用变导程钻头研究 [D]. 大连: 大连工业大学, 2015.

    WANG Binjie. Research on variable lead bit for aluminum alloy processing [D]. Dalian: Dalian University of Technology, 2015.
    [94] 刘澍彬, 张伟, 李铸宇. 铝合金加工用变导程钻头切削试验 [J]. 工具技术,2017,51(6):94-96. doi: 10.3969/j.issn.1000-7008.2017.06.021

    LIU Shubin, ZHANG Wei, LI Zhuyu. Cutting test of variable lead bit for aluminum alloy machining [J]. Tool Engineering,2017,51(6):94-96. doi: 10.3969/j.issn.1000-7008.2017.06.021
    [95] 林涛, 李国和, 刘蒙, 等. 刀具材料对运载火箭叠层厚板高速制孔影响的实验研究 [J]. 航空精密制造技术,2017,53(4):24-28. doi: 10.3969/j.issn.1003-5451.2017.04.007

    LIN Tao, LI Guohe, LIU Meng, et al. Experimental study on the influence of tool material on high-speed hole making of launch vehicle laminated thick plate [J]. Aviation Precision Manufacturing Technology,2017,53(4):24-28. doi: 10.3969/j.issn.1003-5451.2017.04.007
    [96] 王共冬, 周丽, 种强, 等. 碳纤维复合材料/铝合金叠层制孔工艺研究 [J]. 科学技术与工程,2017,17(6):152-157. doi: 10.3969/j.issn.1671-1815.2017.06.027

    WANG Gongdong, ZHOU Li, ZHONG Qiang, et al. Study on hole making process of carbon fiber composite / aluminum alloy lamination [J]. Science Technology and Engineering,2017,17(6):152-157. doi: 10.3969/j.issn.1671-1815.2017.06.027
    [97] 徐国勇, 庞涛, 王贵成. 轴向振动钻削对进给方向毛刺形成的影响 [J]. 工具技术,2019,53(9):71-73. doi: 10.3969/j.issn.1000-7008.2019.09.017

    XU Guoyong, PANG Tao, WANG Guicheng. Effect of axial vibration drilling on burr formation in feed direction [J]. Tool Engineering,2019,53(9):71-73. doi: 10.3969/j.issn.1000-7008.2019.09.017
    [98] 张园, 康仁科, 刘津廷, 等. 超声振动辅助钻削技术综述 [J]. 机械工程学报,2017,53(19):33-44. doi: 10.3901/JME.2017.19.033

    ZHANG Yuan, KANG Renke, LIU Jinting, et al. Overview of ultrasonic vibration assisted drilling technology [J]. Journal of Mechanical Engineering,2017,53(19):33-44. doi: 10.3901/JME.2017.19.033
    [99] ZAI P, TONG J, LIU Z, et al. Analytical model of exit burr height and experimental investigation on ultrasonic-assisted high-speed drilling micro-holes [J]. Journal of Manufacturing Processes,2021,68:807-817.
    [100] 杨淇耀, 吴丹, 陈恳. 钛合金/铝合金叠层低温与干式钻削实验研究 [J]. 组合机床与自动化加工技术,2021(6):1-5. doi: 10.13462/j.cnki.mmtamt.2021.06.001

    YANG Qiyao, WU Dan, CHEN Ken. Experimental study on low temperature and dry drilling of titanium alloy/aluminum alloy lamination [J]. Modular Machine Tool & Automatic Manufacturing Technique,2021(6):1-5. doi: 10.13462/j.cnki.mmtamt.2021.06.001
    [101] NAM J S, LEE P, LEE S W. Experimental characterization of micro-drilling process using nanofluid minimun quantity lubrication [J]. International Journal of Machine Tools and Manufacture,2011,51(7/8):649-652. doi: 10.1016/j.ijmachtools.2011.04.005
    [102] BIERMANN D, HARTMANN H. Reduction of burr formation in drilling using cryogenic process cooling [J]. Procedia CIRP,2012,3:85-90. doi: 10.1016/j.procir.2012.07.016
    [103] 张玉玺, 吴丹, 杨亚鹏, 等. 冷却润滑方式对CFRP/Al叠层钻孔质量及轴向力的影响 [J]. 清华大学学报(自然科学版),2018,58(4):402-410. doi: 10.16511/j.cnki.qhdxxb.2018.22.016

    ZHANG Yuxi, WU Dan, YANG Yapeng, et al. Effect of cooling and lubrication methods on drilling quality and axial force of CFRP/Al laminate [J]. Journal of Tsinghua University (Science and Technology),2018,58(4):402-410. doi: 10.16511/j.cnki.qhdxxb.2018.22.016
    [104] 郑璐晗, 杜兆才, 姚艳彬. 机器人制孔系统与制孔工艺参数优化方法研究 [J]. 装备制造技术,2020(2):6-15, 20. doi: 10.3969/j.issn.1672-545X.2020.02.002

    ZHENG Luhan, DU Zhaocai, YAO Yanbin. Research on robot drilling system and optimization method of drilling process parameters [J]. Equipment Manufacturing Technology,2020(2):6-15, 20. doi: 10.3969/j.issn.1672-545X.2020.02.002
    [105] 卢志军. 制孔质量约束的铝合金薄壁叠层结构单向预压钻孔工艺研究 [J]. 航空制造技术,2015(S2):152-156.

    LU Zhijun. Study on unidirectional preloading drilling technology of aluminum alloy thin-walled laminated structure with hole making quality constraints [J]. Aeronautical Manufacturing Technology,2015(S2):152-156.
    [106] 李源, 胡永祥, 姚振强. 预压紧力下叠层铝合金钻孔层间毛刺试验研究 [J]. 组合机床与自动化加工技术,2014(2):110-113. doi: 10.13462/j.cnki.mmtamt.2014.02.029

    LI Yuan, HU Yongxiang, YAO Zhenqiang. Experimental study on interlayer burr of laminated aluminum alloy drilling under pre compression force [J]. Modular Machine Tool & Automatic Manufacturing Technique,2014(2):110-113. doi: 10.13462/j.cnki.mmtamt.2014.02.029
    [107] 宋尧. 机器人自动制孔末端执行器研制及制孔质量控制方法研究 [D]. 上海: 上海交通大学, 2017.

    SONG Yao. Development of robot automatic drilling end effector and Research on drilling quality control method [D]. Shanghai: Shanghai Jiaotong University, 2017.
    [108] 刘雪锋, 朱伟东, 杨国荣, 等. 基于有限元法的叠层薄壁工件自动化制孔压紧力预测 [J]. 中南大学学报 (自然科学版),2018,49(2):339-344.

    LIU Xuefeng, ZHU Weidong, YANG Guorong, et al. Prediction of pressing force for automatic hole making of laminated thin-walled workpiece based on finite element method [J]. Journal of Central South University(Science and Technology),2018,49(2):339-344.
  • 加载中
图(44) / 表(1)
计量
  • 文章访问数:  500
  • HTML全文浏览量:  134
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-27
  • 修回日期:  2022-03-25
  • 录用日期:  2022-03-30
  • 网络出版日期:  2023-02-07
  • 刊出日期:  2022-08-10

目录

    /

    返回文章
    返回