CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiBw网状增强钛基复合材料旋转超声磨削的磨削力模型

董国军 王磊 高胜东

董国军, 王磊, 高胜东. TiBw网状增强钛基复合材料旋转超声磨削的磨削力模型[J]. 金刚石与磨料磨具工程, 2022, 42(1): 97-103. doi: 10.13394/j.cnki.jgszz.2021.0092
引用本文: 董国军, 王磊, 高胜东. TiBw网状增强钛基复合材料旋转超声磨削的磨削力模型[J]. 金刚石与磨料磨具工程, 2022, 42(1): 97-103. doi: 10.13394/j.cnki.jgszz.2021.0092
DONG Guojun, WANG Lei, GAO Shengdong. Grinding force model for rotary ultrasonic grinding of TiBw mesh reinforced titanium matrix composites[J]. Diamond & Abrasives Engineering, 2022, 42(1): 97-103. doi: 10.13394/j.cnki.jgszz.2021.0092
Citation: DONG Guojun, WANG Lei, GAO Shengdong. Grinding force model for rotary ultrasonic grinding of TiBw mesh reinforced titanium matrix composites[J]. Diamond & Abrasives Engineering, 2022, 42(1): 97-103. doi: 10.13394/j.cnki.jgszz.2021.0092

TiBw网状增强钛基复合材料旋转超声磨削的磨削力模型

doi: 10.13394/j.cnki.jgszz.2021.0092
基金项目: 国家自然科学基金(52075127,51775144)。
详细信息
    作者简介:

    董国军,男,1974年生,副教授。主要研究方向:精密加工、超声辅助加工、增材制造。E-mail: dongguojun@hit.edu.cn

    通讯作者:

    高胜东,男,1973年生,副教授。主要研究方向:精密加工、超声辅助加工、增材制造。E-mail: sdgao@hit.edu.cn

  • 中图分类号: TG58

Grinding force model for rotary ultrasonic grinding of TiBw mesh reinforced titanium matrix composites

  • 摘要: 针对TiBw网状增强钛基复合材料加工时表面质量差、加工过程不平稳等问题,开展其旋转超声磨削的法向磨削力研究。分析旋转超声磨削中的磨粒运动规律,建立旋转超声磨削TiBw网状增强钛基复合材料的法向磨削力模型,并通过单因素磨削试验对模型进行验证。结果表明:在一定的主轴转速、进给速度、磨削深度及固定磨削宽度条件下,法向磨削力随主轴转速的增加而减小,随进给速度、磨削深度的增加而增大,且其磨削试验值与模型计算值的相对误差绝对值均在6%以内。模型很好地预测了TiBw网状增强钛基复合材料磨削时的法向磨削力,验证了预测模型的有效性。

     

  • 图  1  TiBw网状增强钛基复合材料的抛光表面

    Figure  1.  Polished surface of TiBw mesh reinforced titanium matrix composites

    图  2  旋转超声加工的材料去除示意图

    Figure  2.  Schematic diagram of material removal in rotary ultrasonic machining

    图  3  磨粒的简化运动轨迹

    Figure  3.  Simplified motion trajectory of grain

    图  4  磨削力试验装置

    Figure  4.  Grinding force experimental device

    图  5  法向力计算值与试验值比较

    Figure  5.  Comparison between calculated values and experimental value of normal force

    表  1  正交试验参数

    Table  1.   Orthogonal experimental parameters

    水平因素
    主轴转速
    n / (r·min−1)
    进给速度
    vf / (mm·min−1)
    磨削深度
    ap / μm
    磨削宽度
    b / mm
    16 0001086
    28 0001512
    310 0002016
    412 0002520
    下载: 导出CSV

    表  2  单因素试验参数

    Table  2.   Single factor experiment parameters

    因素取值
    主轴转速 n / (r·min−1)6 000,7 000,8 000,9 000,
    10 000,11 000,12 000
    进给速度 vf / (mm·min−1)8,10,12,14,16,18,20
    磨削深度 ap / μm8,10,12,14,16,18,20
    磨削宽度 b / mm6
    超声振幅 A / μm2
    超声频率 f / Hz30 000
    下载: 导出CSV
  • [1] 刘世锋, 宋玺, 薛彤, 等. 钛合金及钛基复合材料在航空航天的应用和发展 [J]. 航空材料学报,2020,40(3):77-94.

    LIU Shifeng, SONG Xi, XUE Tong, et al. Application and development of titanium alloy and titanium matrix composites in aerospace field [J]. Journal of Aeronautial Materials,2020,40(3):77-94.
    [2] BLAU P, JOLLY B. Relationships between abrasive wear, hardness, and grinding characteristics of titanium-based metal-matrix composites [J]. Journal of Materials Engineering and Performance,2009,18:424-432. doi: 10.1007/s11665-008-9227-3
    [3] ZHAO B, DING W, DAI J, et al. A comparison between conventional speed grinding and super-high speed grinding of (TiCp+TiBw)/Ti-6Al-4V composites using vitrified CBN wheel [J]. The International Journal of Advanced Manufacturing Technology,2014,72(1/2/3/4):69-75. doi: 10.1007/s00170-014-5656-3
    [4] BEJJANI R, SHI B, ATTIA H, et al. Laser assisted turning of titanium metal matrix composite [J]. CIRP Annals,2011,60(1):61-64. doi: 10.1016/j.cirp.2011.03.086
    [5] LI Z, DING W, LIU C, et al. Grinding performance and surface integrity of particulate-reinforced titanium matrix composites in creep-feed grinding [J]. The International Journal of Advanced Manufacturing Technology,2018,94(9):3917-3928.
    [6] 胡智特, 秦娜, 刘凡. 超声振动车削TC4钛合金的切削性能研究 [J]. 机械设计与制造,2018(2):164-166.

    HU Zhite, QIN Na, LIU Fan. Study on cutting performance of TC4 titanium alloy by ultrasonic vibration turning [J]. Machinery Design & Manufacture,2018(2):164-166.
    [7] 马超, 张建华, 陶国灿. 超声振动辅助铣削加工钛合金表面摩擦磨损性能研究 [J]. 表面技术,2017,46(8):115-119.

    MA Chao, ZHANG Jianhua, TAO Guocan. Wear and friction properties of titanium alloy surface subject to ultrasonic vibration assisted milling [J]. Surface Technology,2017,46(8):115-119.
    [8] 张习芳, 郑侃, 廖文和, 等. 超声振动辅助铣削钛合金的表面完整性研究 [J]. 工具技术,2017,51(9):12-16.

    ZHANG Xifang, ZHENG Kan, LIAO Wenhe, et al. Investigation on surface integrity for ultrasonic vibration assisted milling titanium alloy [J]. Tool Engineering,2017,51(9):12-16.
    [9] 杨宇辉, 陈海彬, 马文举, 等. 氧化锆陶瓷旋转超声加工脆塑转变特性研究 [J]. 表面技术,2020,49(4):90-97.

    YANG Yuhui, CHEN Haibin, MA Wenju, et al. Study of the characteristics of brittle-ductile transition in rotary ultrasonic machining of zirconia ceramics [J]. Surface Technology,2020,49(4):90-97.
    [10] TESFAY H, XU Z, LI Z. Ultrasonic vibration assisted grinding of bio-ceramic materials: An experimental study on edge chippings with Hertzian indentation tests [J]. The International Journal of Advanced Manufacturing Technology,2016,86(9):3483-3494.
    [11] SINGH R, SINGHAL S. Rotary ultrasonic machining of macor ceramic: An experimental investigation and microstructure analysis [J]. Materials and Manufacturing Processes,2016,32(9):927-939.
    [12] WANG H, PEI Z, CONG W. A mechanistic cutting force model based on ductile and brittle fracture material removal modes for edge surface grinding of CFRP composites using rotary ultrasonic machining [J]. International Journal of Mechanical Sciences,2020,176:105551. doi: 10.1016/j.ijmecsci.2020.105551
    [13] ZHOU M, ZHENG W. A model for grinding forces prediction in ultrasonic vibration assisted grinding of SiCp/Al composites [J]. The International Journal of Advanced Manufacturing Technology,2016,87(9/10/11/12):3211-3224. doi: 10.1007/s00170-016-8726-x
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  306
  • HTML全文浏览量:  99
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-01
  • 修回日期:  2021-09-27
  • 录用日期:  2021-11-26
  • 刊出日期:  2022-03-17

目录

    /

    返回文章
    返回