CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ITO导电玻璃单颗磨粒切削机理仿真试验研究

邱晓龙 孙兴伟 刘寅 杨赫然 董祉序 张维锋

邱晓龙, 孙兴伟, 刘寅, 杨赫然, 董祉序, 张维锋. ITO导电玻璃单颗磨粒切削机理仿真试验研究[J]. 金刚石与磨料磨具工程, 2024, 44(3): 354-362. doi: 10.13394/j.cnki.jgszz.2023.0183
引用本文: 邱晓龙, 孙兴伟, 刘寅, 杨赫然, 董祉序, 张维锋. ITO导电玻璃单颗磨粒切削机理仿真试验研究[J]. 金刚石与磨料磨具工程, 2024, 44(3): 354-362. doi: 10.13394/j.cnki.jgszz.2023.0183
QIU Xiaolong, SUN Xingwei, LIU Yin, YANG Heran, DONG Zhixu, ZHANG Weifeng. Simulation experimental on material removal mechanism of ITO conductive glass by single abrasive[J]. Diamond & Abrasives Engineering, 2024, 44(3): 354-362. doi: 10.13394/j.cnki.jgszz.2023.0183
Citation: QIU Xiaolong, SUN Xingwei, LIU Yin, YANG Heran, DONG Zhixu, ZHANG Weifeng. Simulation experimental on material removal mechanism of ITO conductive glass by single abrasive[J]. Diamond & Abrasives Engineering, 2024, 44(3): 354-362. doi: 10.13394/j.cnki.jgszz.2023.0183

ITO导电玻璃单颗磨粒切削机理仿真试验研究

doi: 10.13394/j.cnki.jgszz.2023.0183
基金项目: 国家自然科学基金(52005346,52005347);辽宁省应用基础研究计划项目(2022JH2/101300214);辽宁省自然科学基金计划项目(2021-BS-149);辽宁省教育厅科学研究经费项目(LQGD2020017)。
详细信息
    作者简介:

    孙兴伟:刘寅,男,1986年生,副教授、博士。主要研究方向:难加工材料精密加工技术、微尺度加工技术、绿色与清洁加工技术。E-mail:liuyin_neu@163.com

  • 中图分类号: TG580.6

Simulation experimental on material removal mechanism of ITO conductive glass by single abrasive

  • 摘要: 为研究氧化铟锡(indium tin oxide,ITO)导电玻璃材料的去除机理,采用单磨粒对材料进行切削仿真,建立了ITO导电玻璃的材料模型,根据加工表面形貌、应力和切削力情况分析了材料去除机理,之后研究了切削参数对切削力和残余应力的影响,并与钠钙玻璃进行对比分析。结果表明:在磨粒的切削过程中,材料的去除受ITO薄膜层、玻璃基底和内聚力接触行为的共同影响,会产生分层、通道开裂和层间断裂等失效形式;随着磨粒的进给,切削力在一定范围内波动,且呈现上升、稳定、降低的变化,同时磨粒的切削力与切削速度和切削深度呈正相关;薄膜上残余应力相比玻璃基底,数值更大且波动更剧烈;当切削深度接近ITO薄膜厚度时,薄膜的存在对磨粒切削行为的影响显著。

     

  • 图  1  磨粒切削模型

    Figure  1.  Abrasive cutting model

    图  2  ITO导电玻璃结构图

    Figure  2.  Structure diagram of ITO glass

    图  3  内聚力模型

    Figure  3.  Model of cohesive zone

    图  4  切削形貌

    Figure  4.  Morphology of cutting

    图  5  切入阶段应力云图

    Figure  5.  Stress nephogram of entry stage

    图  6  切出阶段应力云图

    Figure  6.  Stress nephogram of exit stage

    图  7  磨粒切削力随时间变化曲线

    Figure  7.  Curve of abrasive cutting force over time

    图  8  不同切削参数下的切向力

    Figure  8.  Tangential force in different cutting parameters

    图  9  切向力随时间变化曲线

    Figure  9.  Tangential force over time curve

    图  10  切向力随切削参数变化曲线

    Figure  10.  Curve of tangential force in different cutting parameters

    图  11  残余应力沿路径分布曲线

    Figure  11.  Curve of residual stress

    图  12  残余应力随切削参数变化曲线

    Figure  12.  Curve of residual stress in different cutting parameters

    表  1  玻璃基底JH-2模型参数

    Table  1.   JH-2 model parameters for glass substrate

    参数取值参数取值
    密度ρ/ (kg·m−3)2 530


    A0.71
    剪切模量G/ MPa2 690B0.178
    损伤
    常量
    D10.043C0.018 33
    D20.85M1
    FS1.0N0.61
    状态
    方程
    K143.2T/ MPa27.8
    K2−67.2HEL/ MPa5 950
    K3153.2PHEL/ MPa2 920
    BATE1SFmax/ MPa0.5
    EPSO/ s−10.001
    下载: 导出CSV

    表  2  ITO薄膜的材料属性

    Table  2.   Material properties of ITO films

    参数 数值
    密度ρ/ (kg·m−3) 6 800
    弹性模量E/ GPa 116
    泊松比 0.35
    抗拉强度$ {\text{σ}}_{\text{t}} $/ MPa 293
    断裂能$ {\text{G}}_{\text{f}}^{\text{I}} $/ (J·m−2) 36.3
    下载: 导出CSV
  • [1] THIRUMOORTHI M, PRAKASH J T J. Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis technique [J]. Journal of Asian Ceramic Societies,2016,4(1):124-132. doi: 10.1016/j.jascer.2016.01.001
    [2] LEWIS B G, PAINE D C. Applications and processing of transparent conducting oxides [J]. Mrs Bulletin,2000,25(8):22-27. doi: 10.1557/mrs2000.147
    [3] HENGST C, MENZEL S B, RANE G K, et al. Mechanical properties of ZTO, ITO, and a-Si: H multilayer films for flexible thin film solar cells [J]. Materials,2017,10(3):245. doi: 10.3390/ma10030245
    [4] OH S J, KWON J H, LEE S, et al. Unveiling the annealing-dependent mechanical properties of freestanding indium tin oxide thin films [J]. Acs Applied Materials & Interfaces,2021,13(14):16650-16659.
    [5] WANG Z X, WANG S B, WANG J R, et al. Mechanical performance of ITO/Ag/ITO multilayer films deposited on glass substrate by RF and DC magnetron sputtering [J]. Ceramics International,2021,47(22):31442-31450. doi: 10.1016/j.ceramint.2021.08.020
    [6] JUNG H S, EUN K, KIM Y T, et al. Experimental and numerical investigation of flexibility of ITO electrode for application in flexible electronic devices [J]. Microsystem Technologies,2017,23(6):1961-1970.
    [7] ZIAEI S, WU Q, FITCH J, et al. Channel cracking and interfacial delamination of indium tin oxide (ITO) nano-sized films on polyethylene terephthalate (PET) substrates: experiments and modeling [J]. Experimental Mechanics,2019,59(5):703-712. doi: 10.1007/s11340-019-00534-y
    [8] TIAN X, XIONG S, ZHANG Y, et al. Simulation of thermal stress in ion beam sputtered Ta2O5/SiO2 multilayer coatings on different substrates by finite element analysis [J]. Surface and Coatings Technology,2019(362):225-233.
    [9] QIU Y, JIN Y, ZHAO H, et al. Physical properties of ITO thin films prepared by ion-assisted electron beam evaporation[C]// International Symposium on Optoelectronic Technology and Application, 2014(9295): 929505.
    [10] LEE K Y, CHOI G W, KIM Y J, et al. Chemical mechanical polishing characteristics of ITO thin film prepared by RF magnetron sputtering [J]. Journal of the Korean Physical Society,2012,60(3):388-392. doi: 10.3938/jkps.60.388
    [11] CHEN L, CAO K Q, LIU J K, et al. Surface birefringence of regular periodic surface structures produced on glass coated with an indium tin oxide film using a low-fluence femtosecond laser through a cylindrical lens [J]. Optics Express,2020,28(20):30094-30106. doi: 10.1364/OE.402037
    [12] TAN S, LONG S, YAO X, et al. An improved material model for loading-path and strain-rate dependent strength of impacted soda-lime glass plate [J]. Journal of Materials Research and Technology,2021(15):1905-1919.
    [13] CHEN J, BULL S J. Assessment of the toughness of thin coatings using nanoindentation under displacement control [J]. Thin Solid Films,2006,494(1/2):1-7.
    [14] HARPER P W, HALLETT S R. Cohesive zone length in numerical simulations of composite delamination [J]. Engineering Fracture Mechanics,2008,75(16):4774-4792. doi: 10.1016/j.engfracmech.2008.06.004
    [15] 黄水泉, 高尚, 黄传真, 等. 脆性材料磨粒加工的纳米尺度去除机理 [J]. 金刚石与磨料磨具工程,2022,42(3):257-267,384.

    HUANG Shuiquan, GAO Shang, HUANG Chuanzhen, et al. Nanoscale removal mechanisms in abrasive machining of brittle solids [J]. Diamond & Abrasives Engineering,2022,42(3):257-267,384.
    [16] 葛培琪, 陈自彬, 王沛志. 单晶硅切片加工技术研究进展 [J]. 金刚石与磨料磨具工程,2020,40(4):12-18.

    GE Peiqi, CHEN Zibin, WANG Peizhi. Review of monocrystalline silicon slicing technology [J]. Diamond & Abrasives Engineering,2020,40(4):12-18.
    [17] WAN L, LI L, DENG Z, et al. Thermal-mechanical coupling simulation and experimental research on the grinding of zirconia ceramics [J]. Journal of Manufacturing Processes,2019(47):41-51.
    [18] HSU J S, LEE C C, WEN B J, et al. Experimental and simulated investigations of thin polymer substrates with an indium tin oxide coating under fatigue bending loadings [J]. Materials,2016,9(9):720. doi: 10.3390/ma9090720
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  249
  • HTML全文浏览量:  90
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-01
  • 修回日期:  2023-10-08
  • 录用日期:  2023-11-03
  • 网络出版日期:  2023-11-06
  • 刊出日期:  2024-06-28

目录

    /

    返回文章
    返回