CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

叶脉仿生分形纹理化金刚石砂轮磨削氧化锆陶瓷试验评价

张晓红 何田仲森 温东东 李超 王卓然 龙翼翔

张晓红, 何田仲森, 温东东, 李超, 王卓然, 龙翼翔. 叶脉仿生分形纹理化金刚石砂轮磨削氧化锆陶瓷试验评价[J]. 金刚石与磨料磨具工程, 2024, 44(3): 374-381. doi: 10.13394/j.cnki.jgszz.2023.0131
引用本文: 张晓红, 何田仲森, 温东东, 李超, 王卓然, 龙翼翔. 叶脉仿生分形纹理化金刚石砂轮磨削氧化锆陶瓷试验评价[J]. 金刚石与磨料磨具工程, 2024, 44(3): 374-381. doi: 10.13394/j.cnki.jgszz.2023.0131
ZHANG Xiaohong, HE Tianzhongsen, WEN Dongdong, LI Chao, WANG Zhuoran, LONG Yixiang. Experimental evaluation of grinding zirconia ceramics with leaf vein bionic fractal textured diamond grinding wheel[J]. Diamond & Abrasives Engineering, 2024, 44(3): 374-381. doi: 10.13394/j.cnki.jgszz.2023.0131
Citation: ZHANG Xiaohong, HE Tianzhongsen, WEN Dongdong, LI Chao, WANG Zhuoran, LONG Yixiang. Experimental evaluation of grinding zirconia ceramics with leaf vein bionic fractal textured diamond grinding wheel[J]. Diamond & Abrasives Engineering, 2024, 44(3): 374-381. doi: 10.13394/j.cnki.jgszz.2023.0131

叶脉仿生分形纹理化金刚石砂轮磨削氧化锆陶瓷试验评价

doi: 10.13394/j.cnki.jgszz.2023.0131
基金项目: 湖南省自然科学基金杰出青年项目(2021JJ10031); 国家自然科学基金(51875200,51905170)。
详细信息
    作者简介:

    张晓红,男,1982年生,博士、教授。主要研究方向:精密与超精密加工。E-mail:jansbomb@126.com

  • 中图分类号: TG74 + 3; TH162; TG58; TQ164

Experimental evaluation of grinding zirconia ceramics with leaf vein bionic fractal textured diamond grinding wheel

  • 摘要: 针对氧化锆陶瓷在传统砂轮磨削过程中存在的磨削力大、加工质量较差等问题,根据叶脉分形结构在减阻导流与散热传质方面的优异性能,建立叶脉分形角模型,设计30.0°、45.0°和60.0° 3种不同分形角度的叶脉仿生分形纹理化金刚石砂轮,对比分析原始砂轮与3种仿生分形砂轮对氧化锆陶瓷磨削表面粗糙度Ra、磨削力和磨削力比的影响。结果表明:仿生分形砂轮比原始砂轮具有更好的磨削性能;与原始砂轮相比,仿生分形砂轮的法向磨削力降低了12.7%~55.8%,切向磨削力降低了8.1%~40.3%,且其对表面粗糙度Ra影响不明显;当分形角为30.0°时,获得的磨削力比最小值为1.4~3.0,表面粗糙度Ra最小值为1.824 μm。

     

  • 图  1  激光纹理化试验平台

    Figure  1.  Laser texturing test platform

    图  2  激光纹理化方法示意图

    Figure  2.  Laser texturing method sketch

    图  3  激光纹理化图案几何参数示意图

    Figure  3.  Laser textured pattern geometry parameter diagram

    图  4  磨削试验装置

    Figure  4.  Grinding test device

    图  5  不同分形角度时的金刚石砂轮表面形貌

    Figure  5.  Surface morphologies of diamond grinding wheels at different fractal angles

    图  6  不同分形角对法向磨削力的影响

    Figure  6.  Effect of different fractal angles on normal grinding forces

    图  7  不同分形角对切向磨削力的影响

    Figure  7.  Effect of different fractal angles on tangential grinding forces

    图  8  不同磨削深度下分形角对法向和切向力力比的影响

    Figure  8.  Effect of fractal angles on normal force and tangential force ratios at different grinding depths

    图  9  不同分形角砂轮和普通砂轮磨削后工件的表面粗糙度和三维形貌

    Figure  9.  Surface roughness and 3D morphology of workpieces after grinding with different fractal angle grinding wheels and ordinary grinding wheel

    图  10  工件SEM形貌

    Figure  10.  SEM morphology of workpiece

    表  1  烧蚀宏观主脉与侧脉的激光参数

    Table  1.   Laser parameters for ablation of main and side veins

    参数主脉侧脉
    焦距 f / mm105105
    光斑直径 df / μm6060
    激光功率 Pavg / W2319
    脉冲频率 fp / kHz2525
    扫描速度 Vs / (mm·s−1)2 1002 100
    扫描次数 N3330
    下载: 导出CSV

    表  2  青铜结合剂金刚石砂轮参数

    Table  2.   Bronze bond diamond grinding wheel parameters

    参数类型或取值
    砂轮型号SDC120N100B
    砂轮直径 D / mm180
    内孔直径 d / mm32
    砂轮宽度 W / mm20
    磨粒层厚度 h / mm5
    磨粒基本颗粒尺寸 D50 / μm70~130
    磨粒浓度φ / %75
    磨粒金刚石
    下载: 导出CSV

    表  3  氧化锆陶瓷材料的机械特征

    Table  3.   Mechanical characteristics of zirconia ceramic materials

    氧化锆陶瓷取值
    密度 ρ / (kg·m−3)5.7 × 103
    弹性模量 E / GPa200
    硬度 H / GPa12
    断裂韧性 EIC / (MPa·m1/2)8
    下载: 导出CSV

    表  4  磨削试验参数

    Table  4.   Grinding test parameters

    磨削参数类型或取值
    砂轮速度 V / (m·s−1)35
    工件进给速度 Vf / (m·min−1)2
    磨削深度 ap / μm5, 10, 15, 20
    磨削方式顺磨
    磨削液W20水基冷却液
    下载: 导出CSV
  • [1] 张云龙. SiC/SiC复合材料微孔激光--化学复合加工技术研究 [D]. 山东: 青岛理工大学, 2022

    ZHANG Yunlong. Research on microporous laser-chemical composite processing technology for SiC/SiC composite materials [D]. Shandong: Qingdao University of Technology, 2022.
    [2] 廖燕玲, 张凤林, 李凯江, 等. 微结构砂轮对不同陶瓷的磨削性能 [J]. 金刚石与磨料磨具工程,2022,42(3):290-299. doi: 10.13394/j.cnki.jgszz.2021.0204

    LIAO Yanling, ZHANG Fenglin, LI Kaijiang, et al. Grinding performance of micro-texured grinding wheel on different ceramic materials [J]. Diamond and Abrasives Engineering,2022,42(3):290-299. doi: 10.13394/j.cnki.jgszz.2021.0204
    [3] PANG J Z, JI X, NIU Y, et al. Experimental investigation of grinding force and materialremoval mechanism of laser-structured zirconia ceramics [J]. Micromachines,2022,13(5):710. doi: 10.3390/mi13050710
    [4] DENG H, WU X S, YUCHI G Z, et al. Research on laser preparation and grinding performance of hydrophilic structured grinding wheels [J]. Ceramics International,2023,49(5):7649-7661. doi: 10.1016/j.ceramint.2022.10.240
    [5] ALI S M, JONHNSIN N N, MADHAVADAS V, et al. Investigation on the effect of grinding wheel for grinding of AISI D3 tool steel under different conditions [J]. Engineering Research Express,2022,4(4):045036. doi: 10.1088/2631-8695/aca956
    [6] MA Z L, WANG Q H, CHEN H, et al. Surface prediction in laser-assisted grinding process considering temperature-dependent mechanical properties of zirconia ceramic [J]. Journal of Manufacturing Processes,2022,80:491-503.
    [7] CHEN Z, ZHANG X H, WEN D D, et al. Improved grinding performance of SiC using an innovative bionic vein-like structured grinding wheel optimized by hydrodynamics [J]. Journal of Manufacturing Processes,2023(101):195-207. doi: 10.1016/j.jmapro.2023.06.010
    [8] ZHANG X H, KANG Z X, LI S, et al. Grinding force modelling for ductile-brittle transition in laser macro-micro-structured grinding of zirconia ceramics [J]. Ceramics International,2019,45(15):18487-18500. doi: 10.1016/j.ceramint.2019.06.067
    [9] MA Z L, WANG Z, WANG X Z, et al. Effects of laser-assisted grinding on surface integrity of zirconia ceramic [J]. Ceramics International,2020,46(1):921-929. doi: 10.1016/j.ceramint.2019.09.051
    [10] ZHANG X H, LI S, KANG Z X, et al. Experimental investigations on the impact of different laser macro-structured diamond grinding wheels on alumina ceramic [J]. The International Journal of Advanced Manufacturing Technology,2018(96):5-8.
    [11] WEN D D, WAN LL, ZHANG X H, et al. Grinding performance evaluation of SiC ceramic by bird feather-like structure diamond grinding wheel [J]. Journal of Manufacturing Processes,2023(95):382-391. doi: 10.1016/j.jmapro.2023.04.024
    [12] BUTLER-SMITH P W, AXINTE D A, DAINE M. Ordered diamond micro-arrays for ultraprecision grinding—An evaluation in Ti-6Al-4V [J]. International Journal of Machine Tools and Manufacture. 2010, 51 (1): 54-66.
    [13] WALTER C, KOMISCHKE T, KUSTER F, et al. Laser-structured grinding tools—Generation of prototype patterns and performance evaluation [J]. Journal of Materials Processing Technology,2014,214(4):951-961. doi: 10.1016/j.jmatprotec.2013.11.015
    [14] WALTER C, KOMISCHKE T, WEINGARTNER E, et al. Structuring of CBN grinding tools by ultrashort pulse laser ablation [J]. Procedia CIRP,2014(14):31-36. doi: 10.1016/j.procir.2014.03.093
    [15] YU H Y, LU Y S, WANG J. Study on wear of the grinding wheel with an abrasive phyllotactic pattern [J]. Wear,2016(358/359):89-96.
    [16] LI S, YUCHI G Z, ZHANG X H, et al. Grinding behavior of biomimetic fractal-branched silicon carbide ceramic inspired from leaf-vein structure [J]. Ceramics International,2022,48(13):18212-18223. doi: 10.1016/j.ceramint.2022.03.080
    [17] ANTONIO F M. Constructal branching design for fluid flow and heat transfer [J]. International Journal of Heat and Mass Transfer,2018(122):204-211. doi: 10.1016/j.ijheatmasstransfer.2018.01.095
    [18] UYLINGS H B M. Optimization of diameters and bifurcation angles in lung and vascular tree structures [J]. Bulletin of Mathematical Biology,1977,39(5):509-520. doi: 10.1016/S0092-8240(77)80054-2
    [19] DENG H, CHEN G, HE J, et al. Online, efficient and precision laser profiling of bronze-bonded diamond grinding wheels based on a single-layer deep-cutting intermittent feeding method [J]. Optics and Laser Technology,2016(80):41-50. doi: 10.1016/j.optlastec.2015.12.021
    [20] MURRAY C D. The physiological principle of minimum work: I. The vascular system and the cost of blood volume [J]. Proceedings of the National Academy of Sciences of the United States of America,1926,12(3):207-214.
    [21] MURRAY C D. The physiological principle of minimum work applied to the angle of branching of arteries [J]. The Journal of General Physiology,1926,9(6):835-841. doi: 10.1085/jgp.9.6.835
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  304
  • HTML全文浏览量:  111
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-20
  • 修回日期:  2023-09-06
  • 网络出版日期:  2023-11-06
  • 刊出日期:  2024-06-28

目录

    /

    返回文章
    返回