CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni-Al辅助微波自蔓延烧结制备Ti3SiC2基金刚石复合材料工艺研究

史书浩 杨黎 郭胜惠 高冀芸 侯明 鲁元佳

史书浩, 杨黎, 郭胜惠, 高冀芸, 侯明, 鲁元佳. Ni-Al辅助微波自蔓延烧结制备Ti3SiC2基金刚石复合材料工艺研究[J]. 金刚石与磨料磨具工程, 2024, 44(1): 22-30. doi: 10.13394/j.cnki.jgszz.2023.0021
引用本文: 史书浩, 杨黎, 郭胜惠, 高冀芸, 侯明, 鲁元佳. Ni-Al辅助微波自蔓延烧结制备Ti3SiC2基金刚石复合材料工艺研究[J]. 金刚石与磨料磨具工程, 2024, 44(1): 22-30. doi: 10.13394/j.cnki.jgszz.2023.0021
SHI Shuhao, YANG Li, GUO Shenghui, GAO Jiyun, HOU Ming, LU Yuanjia. Preparation of Ti3SiC2/diamond composites by Ni-Al assisted microwave self-propagating sintering[J]. Diamond & Abrasives Engineering, 2024, 44(1): 22-30. doi: 10.13394/j.cnki.jgszz.2023.0021
Citation: SHI Shuhao, YANG Li, GUO Shenghui, GAO Jiyun, HOU Ming, LU Yuanjia. Preparation of Ti3SiC2/diamond composites by Ni-Al assisted microwave self-propagating sintering[J]. Diamond & Abrasives Engineering, 2024, 44(1): 22-30. doi: 10.13394/j.cnki.jgszz.2023.0021

Ni-Al辅助微波自蔓延烧结制备Ti3SiC2基金刚石复合材料工艺研究

doi: 10.13394/j.cnki.jgszz.2023.0021
基金项目: NSAF基金(U2030207);国家自然科学基金(51864028)。
详细信息
    通讯作者:

    杨黎,男,1984年生,博士、教授,博士生导师。主要研究方向:气体敏感材料高通量筛选及MEMS器件开发、微波在粉末冶金烧结过程中的应用、大尺寸多晶金刚石膜及单晶金刚石外延生长等。E-mail:yanglikmust@163.com

  • 中图分类号: TG74

Preparation of Ti3SiC2/diamond composites by Ni-Al assisted microwave self-propagating sintering

  • 摘要:

    为降低金刚石磨削工具的制造成本和能耗,探寻一种在低能耗下实现高性能陶瓷结合剂金刚石磨具的制备工艺,同时研究助燃剂Si和金刚石粒度等因素对样品物相组成、显微形貌和磨削性能的影响。采用Ti、Si、石墨粉和金刚石磨料作为原料,经冷压成型至生胚,通过Ni-Al辅助在微波场加热诱发Ti-Si-C体系发生自蔓延高温合成(SHS)反应以制备Ti3SiC2基金刚石复合材料。结果表明,高热值Ni-Al合金辅助可以缩短样品的烧结时间,还可以将诱发SHS反应的温度点控制在金刚石石墨化温度以下。在Ar保护气氛下,Ti-Si-C体系发生SHS反应,可生成Ti3SiC2、TiC和Ti5Si3等3种物相。随Si含量升高,Ti3SiC2相先增多后减少,当n (Ti): n (Si): n (C)= 3∶1.1∶2时,复合材料的磨削性能最佳,磨耗比最高可达286.53。分析不同原料配比下的试样磨耗比差异的产生机制,认为基体组织中存在微小且分布均匀的气孔结构,在磨削时可产生大区域的平整磨削面,易于发挥金刚石磨料的磨削效果,有利于提升复合材料样品的磨削性能。

     

  • 图  1  Ar气氛下Ti-Si-C体系的升温曲线图(a)不含Ni-Al合金下微波加热与常规加热;(b)含Ni-Al合金下微波加热

    Figure  1.  Heating curve of Ti-Si-C system under Ar atmosphere (a) microwave heating and conventional heating without Ni-Al alloy; (b) microwave heating with Ni-Al alloy

    图  2  使用Ni-Al合金辅助微波烧结产物形貌对比图

    Figure  2.  Comparison of Ni-Al alloy assisted microwave sintering product morphology

    图  3  Ti-Si-C体系中掺杂不同粒度金刚石磨料(质量分数为10%)的XRD图谱

    Figure  3.  XRD of Ti-Si-C system doped with 10% wt diamond abrasives and different particle sizes

    图  4  Ti-Si-C体系中掺杂不同粒度金刚石磨料(质量分数为10%)的F值

    Figure  4.  F value of Ti-Si-C system doped with diamond abrasives with different particle sizes (mass fraction of 10%)

    图  5  微波SHS烧结制备Ti3SiC2基金刚石复合材料的SEM图

    Figure  5.  SEM of Ti3SiC2/diamond composites prepared by microwave SHS sintering

    图  6  Ni-Al辅助微波诱发自蔓延烧结制备Ti3SiC2基金刚石复合材料EDS点扫描图

    Figure  6.  EDS of Ti3SiC2/diamond composites prepared by Ni-Al assisted microwave induced self-propagating sintering

    图  7  Ni-Al辅助微波诱发自蔓延烧结制备Ti3SiC2基金刚石复合材料摩擦磨损测试图

    Figure  7.  Grinding consumption ratio of Ti3SiC2/diamond composites prepared by Ni-Al assisted microwave induced self-propagating sintering

    图  8  Ti3SiC2基金刚石复合材料气孔分布对磨削性能影响示意图(a)高磨耗比样品;(b)低磨耗比样品

    Figure  8.  Effect of pore distribution on grinding performance of Ti3SiC2/diamond composites schema (a) high grinding consumption ratio samples; (b) Low grinding consumption ratio samples

    图  9  Ti3SiC2基金刚石复合材料摩擦磨损测试截面SEM图

    Figure  9.  SEM of grinding consumption test section of Ti3SiC2/diamond composites

    表  1  Ti3SiC2基金刚石复合材料的性能参数

    Table  1.   Performance parameters of Ti3SiC2/diamond composites

    性能类型取值
    磨耗比 286.53
    相对致密度 ρd / % 83.62
    导电率 σ / (S·m-1) 2.15 × 106
    热导率 λ / (W·m-1·K-1) 7.67
    抗折强度 R / MPa 223.66
    硬度(HRC) 32.85
    下载: 导出CSV
  • [1] 廖原时. 由我国石材矿山机械化开采看行业进步 [J]. 石材,2016(2):20-24. doi: 10.3969/j.issn.1005-3352.2016.02.007

    LIAO Yuanshi. Looking at the progress of the industry from the mechanized mining of stone mines in China [J]. Stone,2016(2):20-24. doi: 10.3969/j.issn.1005-3352.2016.02.007
    [2] 赵民. 近十年中国石材加工装备与技术评述 [J]. 石材,2016(2):25-29. doi: 10.3969/j.issn.1005-3352.2016.02.008

    ZHAO Min. Review of stone processing equipment and technology in China in recent ten years [J]. Stone,2016(2):25-29. doi: 10.3969/j.issn.1005-3352.2016.02.008
    [3] 王超超, 张凤林, 李伟雄, 等. 空心玻璃微珠对陶瓷结合剂金刚石砂轮微观结构和力学性能的影响 [J]. 工具技术,2017,51(10):36-39. doi: 10.16567/j.cnki.1000-7008.2017.10.008

    WANG Chaochao, ZHANG Fenglin, LI Weixiong, et al. Effect of glass bubble as pore former on micro-structure and mechanical properties of vitrified bond diamond grinding wheels [J]. Tool Engineering,2017,51(10):36-39. doi: 10.16567/j.cnki.1000-7008.2017.10.008
    [4] 丁玉龙, 苗卫鹏, 骆苗地, 等. 陶瓷结合剂金刚石砂轮组织结构对其性能的影响 [J]. 金刚石与磨料磨具工程,2020,40(4):19-23. doi: 10.13394/j.cnki.jgszz.2020.4.0003

    DING Yulong, MIAO Weipeng, LUO Miaodi, et al. Influence of structure of vitrified bond diamond grinding wheel on its performance [J]. Diamond & Abrasives Engineering,2020,40(4):19-23. doi: 10.13394/j.cnki.jgszz.2020.4.0003
    [5] 周琪. 金刚石砂轮用陶瓷结合剂制备以及结构与性能的研究 [D]. 武汉: 武汉理工大学, 2014.

    ZHOU Qi. Preparation and research on structure and properties of vitrified bond for diamond grinding wheel [D]. Wuhan: Wuhan University of Technology, 2014.
    [6] BARSOUM M, RADOVIC M. Elastic and mechanical properties of the MAX phases [J]. Annual Review of Materials Research,2010,41:195-227. doi: 10.1146/annurev-matsci-062910-100448
    [7] BARSOUM M. MAX phases: Properties of machinable ternary carbides and nitrides [M]. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2013.
    [8] INGASON A, PETRUHINS A, ROSEN J. Toward structural optimization of MAX phases as epitaxial thin films [J]. Materials Research Letters,2016,4(3):1-9. doi: 10.1080/21663831.2016.1157525
    [9] RADOVIC M, BARSOUM M. MAX phases: Bridging the gap between metals and ceramics [J]. American Ceramic Society Bulletin,2013,92(3):20-27.
    [10] JAWORSKA L, STOBIERSKI L, TWARDOWSKA A, et al. Preparation of materials based on Ti-Si-C system using high temperature high pressure method [J]. Journal of Materials Processing Technology,2015,162/163:184-189. doi: 10.1016/j.jmatprotec.2005.02.172
    [11] MERZHANOV A G. Thermal explosion and ignition as a method for formal kinetic studies of exothermic reactions in the condensed phase [J]. Combustion and Flame,1967,11(3):201-211. doi: 10.1016/0010-2180(67)90046-6
    [12] JAWORSKA L, SZUTKOWSKA M, MORGIEL J, et al. Ti3SiC2 as a bonding phase in diamond composites [J]. Journal of Materials Science Letters,2001,20(19):1783-1786. doi: 10.1023/A:1012535100330
    [13] 梁宝岩, 张旺玺, 王艳芝, 等. 微波烧结制备MAX相-金刚石复合材料 [J]. 金刚石与磨料磨具工程,2016,36(1):25-30. doi: 10.13394/j.cnki.jgszz.2016.1.0006

    LIANG Baoyan, ZHANG Wangxi, WANG Yanzhi, et al. MAX phase-diamond composites fabricated by microwave sintering [J]. Diamond & Abrasives Engineering,2016,36(1):25-30. doi: 10.13394/j.cnki.jgszz.2016.1.0006
    [14] 李正阳, 周爱国, 李良, 等. 无压烧结制备Ti3SiC2-金刚石复合材料的反应机理与微观结构 [J]. 兵器材料科学与工程,2013,36(6):29-31. doi: 10.3969/j.issn.1004-244X.2013.06.011

    LI Zhengyang, ZHOU Aiguo, LI Liang, et al. Reaction mechanisms and microstructure of Ti3SiC2-diamond composites synthesized by pressureless sintering [J]. Ordnance Material Science and Engineering,2013,36(6):29-31. doi: 10.3969/j.issn.1004-244X.2013.06.011
    [15] 陈国清, 赵薇, 任媛媛, 等. 微波烧结WC-ZrO2复合材料的微观组织及增韧机理 [J]. 现代技术陶瓷,2018,39(4):287-294. doi: 10.16253/j.cnki.37-1226/tq.2018.03.002

    CHEN Guoqing, ZHAO Wei, REN Yuanyuan, et al. Microstructure and toughening mechanism of WC-ZrO2 composites by microwave sintering [J]. Advanced Ceramics,2018,39(4):287-294. doi: 10.16253/j.cnki.37-1226/tq.2018.03.002
    [16] WANG L, GUO S, GAO J, et al. Microwave sintering behavior of FeCuCo based metallic powder for diamond alloy tool bit [J]. Journal of Alloys and Compounds,2017,727:94-99. doi: 10.1016/j.jallcom.2017.08.132
    [17] MANIÈRE C, ZAHRAH T, OLEVSKY E A. Fully coupled electromagnetic‐thermal‐mechanical comparative simulation of direct vs hybrid microwave sintering of 3Y‐ZrO2 [J]. Journal of the American Ceramic Society,2017. doi: 10.1111/jace.14762
    [18] 叶小磊, 郭胜惠, 高冀芸, 等. 微波无压烧结Fe-Cu-WC基金属结合剂 [J]. 金刚石与磨料磨具工程,2018,38(1):41-44,54. doi: 10.13394/j.cnki.jgszz.2018.1.0007

    YE Xiaolei, GUO Shenghui, GAO Jiyun, et al. Sinter Fe-Cu-WC based metal bonding agent by using microwave pressureless method [J]. Diamond & Abrasives Engineering,2018,38(1):41-44,54. doi: 10.13394/j.cnki.jgszz.2018.1.0007
    [19] 姜元昊, 朱和国. 金属材料微波烧结的研究现状 [J]. 热加工工艺,2018,47(2):19-22. doi: 10.14158/j.cnki.1001-3814.2018.02.005

    JIANG Yuanhao, ZHU Heguo. Research Progress of Microwave Sintering for Metal Materials [J]. Hot Working Technology,2018,47(2):19-22. doi: 10.14158/j.cnki.1001-3814.2018.02.005
    [20] 代振, 张旺玺, 梁宝岩, 等. 微波诱发热爆法制备钛铝碳结合剂金刚石复合材料 [J]. 金刚石与磨料磨具工程,2021,41(2):4-8. doi: 10.13394/j.cnki.jgszz.2021.2.0001

    DAI Zhen, ZHANG Wangxi, LIANG Baoyan, et al. Preparation of titanium-aluminum-carbon bond diamond composite material by microwave induced thermal explosion [J]. Diamond & Abrasives Engineering,2021,41(2):4-8. doi: 10.13394/j.cnki.jgszz.2021.2.0001
    [21] 梁宝岩, 张旺玺, 王艳芝, 等. 微波烧结制备Ti3SiC2-金刚石复合材料的显微形貌及界面反应机理 [J]. 硅酸盐通报,2016,35(3):725-731. doi: 10.16552/j.cnki.issn1001-1625.2016.03.011

    LIANG Baoyan, ZHANG Wangxi, WANG Yanzhi, et al. Microstructure and interfacial reaction mechanism of Ti3SiC2-diamond composites fabricated by microwave sintering [J]. Bulletin of the Chinese Ceramic Society,2016,35(3):725-731. doi: 10.16552/j.cnki.issn1001-1625.2016.03.011
    [22] JIAO X, LIU Y, CAI X, et al. Progress of porous Al-containing intermetallics fabricated by combustion synthesis reactions: A review [J]. Journal of Materials Science,2021,56:11605-11630. doi: 10.1007/s10853-021-06035-5
    [23] 梁宝岩. 自蔓延高温合成Ti3SiC2陶瓷及形成机理研究 [D]. 秦皇岛: 燕山大学, 2011.

    LIANG Baoyan. Investigations of synthesis and formation mechanism of Ti3SiC2 ceramic by self-propagation high-temperature sintering [D]. Qinhuangdao: Yanshan University, 2011.
    [24] ZOU Y, SUN Z M, TADA S, et al. Effect of Al addition on low-temperature synthesis of Ti3SiC2 powder [J]. Journal of Alloys and Compounds,2008,461(1/2):579-584. doi: 10.1016/j.jallcom.2007.07.090
    [25] 吴佩, 韩兵强, 魏佳炜, 等. 板状刚玉骨料气孔结构及性能分析 [J]. 耐火材料,2022,56(6):481-484. doi: 10.3969/j.issn.1001-1935.2022.06.005

    WU Pei, HAN Bingqiang, WEI Jiawei, et al. Pore structure and performance of tabular corundum aggregates [J]. Refractories,2022,56(6):481-484. doi: 10.3969/j.issn.1001-1935.2022.06.005
    [26] 胡晓, 程寓, 袁勤, 等. 微波烧结制备陶瓷结合剂金刚石砂轮的研究 [J]. 陶瓷学报,2019,40(2):191-195. doi: 10.13957/j.cnki.tcxb.2019.02.011

    HU Xiao, CHENG Yu, YUAN Qin, et al. Preparation of vitrified bond diamond grinding wheels by microwave sintering [J]. Journal of Ceramics,2019,40(2):191-195. doi: 10.13957/j.cnki.tcxb.2019.02.011
    [27] 胡晓. 微波烧结陶瓷结合剂金刚石砂轮的研究 [D]. 南京: 南京理工大学, 2018.

    HU Xiao. Study on microwave sintering vitrified bond diamond grinding wheel [D]. Nanjing: Nanjing University of Science and Technology, 2018.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  60
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-05
  • 修回日期:  2023-03-26
  • 录用日期:  2023-04-13
  • 刊出日期:  2024-02-20

目录

    /

    返回文章
    返回