CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米金刚石涂层刀具高速铣削7075铝合金的工艺参数优化

邵伟平 张韬

邵伟平, 张韬. 纳米金刚石涂层刀具高速铣削7075铝合金的工艺参数优化[J]. 金刚石与磨料磨具工程, 2022, 42(4): 473-480. doi: 10.13394/j.cnki.jgszz.2021.4003
引用本文: 邵伟平, 张韬. 纳米金刚石涂层刀具高速铣削7075铝合金的工艺参数优化[J]. 金刚石与磨料磨具工程, 2022, 42(4): 473-480. doi: 10.13394/j.cnki.jgszz.2021.4003
SHAO Weiping, ZHANG Tao. Process parameters optimization of high-speed milling 7075 aluminum alloy with nano-diamond coated tool[J]. Diamond & Abrasives Engineering, 2022, 42(4): 473-480. doi: 10.13394/j.cnki.jgszz.2021.4003
Citation: SHAO Weiping, ZHANG Tao. Process parameters optimization of high-speed milling 7075 aluminum alloy with nano-diamond coated tool[J]. Diamond & Abrasives Engineering, 2022, 42(4): 473-480. doi: 10.13394/j.cnki.jgszz.2021.4003

纳米金刚石涂层刀具高速铣削7075铝合金的工艺参数优化

doi: 10.13394/j.cnki.jgszz.2021.4003
基金项目: 江苏省自然科学基金(BK20201142)。
详细信息
    作者简介:

    邵伟平,男,1973年生,高级实验师。主要研究方向:数控技术与切削加工。E-mail:swp523@sina.com

    通讯作者:

    张韬,女,1984年生,博士、副教授。主要研究方向:CVD金刚石的制备及应用。E-mail:zhangt@wxit.edu.cn

  • 中图分类号: TG58; TH145.9

Process parameters optimization of high-speed milling 7075 aluminum alloy with nano-diamond coated tool

  • 摘要: 采用热丝CVD法制备纳米金刚石薄膜涂层刀具,利用场发射扫描电子显微镜表征薄膜的表面形貌,并用已制备的CVD金刚石涂层刀具,在无润滑干切条件下高速铣削7075铝合金工件,对其精铣工艺参数进行单因素及正交试验,探索精铣后工件的表面粗糙度变化规律并进行工艺参数优化。结果表明:随着主轴转速n从5000 r/min提高到8000 r/min, 工件平均表面粗糙度在逐级缓慢降低;当进给速度vf在1000~7000 mm/min范围内,随着vf提高工件平均表面粗糙度快速增大,在vf为7000 mm/min时,其值达1.790 μm;当轴向切削深度ap在0.1~0.4 mm范围内,随着ap提高,工件平均表面粗糙度逐步增大,但ap在0.2 mm之后其增大趋势变缓。对7075铝合金工件精铣表面粗糙度影响最大的是vf,其次为nap的影响最弱;其精铣的最优参数组合是ap=0.2 mm、vf=1 000 mm/min、n=8 000 r/min,精铣后的表面粗糙度平均值为0.516 μm。选用纳米金刚石薄膜涂层刀具精铣7075铝合金时,为得到较低的表面粗糙度,应选择高主轴转速、低进给速度、合适的轴向切削深度。

     

  • 图  1  纳米金刚石薄膜涂层刀具制备过程中的表面形貌

    Figure  1.  Surface topography of nano-diamond film coated tool during preparation

    图  2  纳米金刚石薄膜涂层铣刀形貌

    Figure  2.  Morphology of milling cutter coated with nano-diamond film

    图  3  正交试验的工件表面形貌

    Figure  3.  Workpiece surface morphology by orthogonal test

    表  1  金刚石薄膜形核及生长参数

    Table  1.   Nucleation and growth parameters of diamond films

    参数取值
    形核生长
    CH4与H2的流量比 Q / (mL·mL−1)1∶50 1 ∶50
    气压 p / kPa1.52.0
    基体温度 θs / °C800900
    热丝温度 θr / °C2 000±2002 200±200
    沉积时间 t1 / min30300
    下载: 导出CSV

    表  2  正交试验因素水平表

    Table  2.   Factor level table of orthogonal test

    水平因素
    轴向切削深度
    ap / mm
    A
    进给速度
    vf / (mm·min−1)
    B
    主轴转速
    n / (r·min−1)
    C
    10.11 0006 000
    20.25 0007 000
    30.47 0008 000
    下载: 导出CSV

    表  3  主轴转速对工件表面粗糙度的影响

    Table  3.   Influences of spindle speeds on workpiece surface roughness

    序号主轴转速
    n / (r·min−1)
    表面粗糙度
    Ra / μm
    表面粗糙度平均值
    $\overline R_{\mathrm{a} }$ /μm
    15 0000.826,1.489,0.882,0.690,0.9140.960
    26 0000.895,0.709,0.923,0.827,0.7280.816
    37 0000.469,0.771,0.582,0.938,0.5990.672
    48 0000.474,0.532,0.647,0.607,0.6280.578
    下载: 导出CSV

    表  4  进给速度对工件表面粗糙度的影响

    Table  4.   Influences of feed speeds on workpiece surface roughness

    序号进给速度
    vf / (mm·min−1)
    表面粗糙度
    Ra /
    μm
    表面粗糙度
    平均值
    $\overline R_{\mathrm{a} }$ /
    μm
    11 0000.575,0.324,0.638,0.587,0.5280.530
    23 0000.986,0.862,0.690,1.131,0.8450.903
    35 0001.081,1.575,1.441,2.023,1.2501.474
    47 0001.639,1.524,1.597,2.184,2.0061.790
    下载: 导出CSV

    表  5  轴向切削深度对工件表面粗糙度的影响

    Table  5.   Influences of axial cutting depths on workpiece surface roughness

    序号轴向切削深度
    ap / mm
    表面粗糙度
    Ra /μm
    表面粗糙度
    平均值
    $\overline R_{\mathrm{a}} $ /μm
    10.10.562,0.765,0.479,0.625,0.3560.557
    20.20.895,0.709,0.923,0.827,0.7280.816
    30.31.018,0.846,0.871,0.823,0.9200.896
    40.40.976,0.832,0.936,0.978,1.1880.982
    下载: 导出CSV

    表  6  正交试验组合及结果

    Table  6.   Orthogonal test combinations and results

    试验组号参数组合表面粗糙度
    Ra /μm
    表面粗糙度
    平均值
    $\overline R _{\mathrm{a}} $ / μm
    1#A1B1C10.820,0.867,0.569,0.762,0.8000.764
    2#A1B2C20.989,1.079,1.307,1.890,2.3931.532
    3#A1B3C31.693,0.866,1.589,2.191,0.8311.434
    4#A2B1C20.575,0.322,0.638,0.587,0.5270.530
    5#A2B2C31.008,1.023,0.735,0.937,1.1170.964
    6#A2B3C11.747,1.167,1.652,2.944,2.2801.958
    7#A3B1C31.005,0.383,0.430,0.502,0.7040.605
    8#A3B2C11.754,1.585,1.566,1.884,1.7761.713
    9#A3B3C21.615,1.933,2.180,2.096,2.4112.047
    下载: 导出CSV

    表  7  3因素的工件表面粗糙度均值以及极差R

    Table  7.   Average values of workpiece surface roughness and range R values of 3 factors

    项目取值
    ap / mmvf / (mm·min−1)n / (r·min−1)
    均值t11.2430.6331.478
    均值t21.1511.4031.370
    均值t31.4551.8131.001
    极差R0.3041.1800.477
    下载: 导出CSV
  • [1] 王立新, 张程焱, 俎晓莉, 等. 切削参数对高强铝合金干切削加工表面形貌的影响 [J]. 工具技术,2019(11):29-33. doi: 10.3969/j.issn.1000-7008.2019.11.007

    WANG Lixin, ZHANG Chengyan, ZU Xiaoli, et al. Effects of cutting parameters on machined surface morphology of high strength aluminium alloy under dry cutting [J]. Tool Engineering,2019(11):29-33. doi: 10.3969/j.issn.1000-7008.2019.11.007
    [2] 张程焱, 王立新, 孟五洲, 等. 7075-T6铝合金干式切削表面完整性研究 [J]. 组合机床与自动化加工技术,2020(3):148-151.

    ZHANG Chengyan, WANG Lixin, MENG Wuzhou, et al. Study on surface integrity of dry cutting of 7075-T6 aluminum alloy [J]. Modular Machine Tool and Automatic Machining Technology,2020(3):148-151.
    [3] 李立军, 李杰华, 张爽, 等. 铣削铝合金表面粗糙度试验研究 [J]. 机床与液压,2018(3):116-118,142. doi: 10.3969/j.issn.1001-3881.2018.03.029

    LI Lijun, LI Jiehua, ZHANG Shuang, et al. Experimental study on surface roughness of milling aluminum alloy [J]. Machine Tool & Hydraulics,2018(3):116-118,142. doi: 10.3969/j.issn.1001-3881.2018.03.029
    [4] 毛玺, 毛若鹏, 冯丹侠. 铣削7075铝合金表面粗糙度试验研究 [J]. 组合机床与自动化加工技术,2020(5):146-149.

    MAO Xi, MAO Ruopeng, FENG Danxia. Experimental study on surface roughness of milling 7075 aluminum alloy [J]. Modular Machine Tool & Automatic Manufacturing Technique,2020(5):146-149.
    [5] 刘启蒙, 许金凯, 于化东, 等. 7075铝合金铣削残余应力及表面质量试验研究 [J]. 工具技术,2018(1):44-47. doi: 10.3969/j.issn.1000-7008.2018.01.010

    LIU Qimeng, XU Jinkai, YU Huadong, et al. Experimental study on residual stress and surface quality of 7075 aluminum alloy milling [J]. Tool Engineering,2018(1):44-47. doi: 10.3969/j.issn.1000-7008.2018.01.010
    [6] 岳修杰, 张平, 宋爱利, 等. 7075铝合金高速铣削表面质量及刀具磨损机理 [J]. 有色金属工程,2021(2):9-16.

    YUE Xiujie, ZHANG Ping, SONG Aili, et al. Study on surface quality and tool wear mechanism of high-speed cutting of 7075 aluminum alloy [J]. Nonferrous Metals Engineering,2021(2):9-16.
    [7] 陆峰, 查丽琼, 刘鲁生, 等. 基于硬脆材料加工的金刚石涂层硬质合金刀具制备及切削性能研究 [J]. 稀有金属与硬质合金,2018(4):78-82,86.

    LU Feng, CHA Liqiong, LIU Lusheng, et al. Research on preparation and cutting performance of diamond-coated cemented carbide tools used in hard brittle material machining [J]. Rare Metals and Cemented Carbide,2018(4):78-82,86.
    [8] ARUMUGAM P U, MALSHE A P, BATZER S A. Dry machining of aluminum-silicon alloy using polished CVD diamond-coated cutting tools inserts [J]. Surface and Coatings Technology, 2006, 200 (11): 3399-3403.
    [9] CHOU Y K, LIU J. CVD diamond tool performance in metal matrix composite machining [J]. Surface and Coatings Technology,2005,200(5):1872-1878.
    [10] ALMGIDA F A, SACRAMENTO J, OLIVEIRA F J, et al. Micro- and nano-crystalline CVD diamond coated tools in the turning of EDM graphite [J]. Surface and Coatings Technology,2008,203(3):271-276.
    [11] SEIN H, AHMED W, JACKSON M, et al. Performance and characterisation of CVD diamond coated, sintered diamond and WC–Co cutting tools for dental and micromachining applications [J]. Thin Solid Films,2004,447/448:455-461. doi: 10.1016/j.tsf.2003.08.044
    [12] KUO C, WANG C, KO S. Wear behaviour of CVD diamond-coated tools in the drilling of woven CFRP composites [J]. Wear,2018,398/399:1-12. doi: 10.1016/j.wear.2017.11.015
    [13] 邓福铭, 陈立, 刘畅, 等. 微米、纳米及微/纳米复合金刚石涂层的切削性能研究 [J]. 金刚石与磨料磨具工程,2015(4):1-5,10.

    DENG Fuming, CHEN Li, LIU Chang, et al. Study on the cutting properties of micro-nano- and micro/nano diamond coatings [J]. Diamond & Abrasives Engineering,2015(4):1-5,10.
    [14] 沈彬. 超光滑金刚石复合薄膜的制备、摩擦学性能及应用研究 [D]. 上海: 上海交通大学, 2009.

    SHEN Bin. Study on the deposition, tribological properties and applications of ultra-smooth composite diamond films [D]. Shanghai: Shanghai Jiaotong University, 2009.
    [15] ZHANG Tao, FENG Qin, YU Zhangyong, et al. Effect of mechanical pretreatment on nucleation and growth of HFCVD diamond films on cemented carbide tools with a complex shape [J]. International Journal of Refractory Metals and Hard Materials,2019,84(13):105016.
    [16] 薛海鹏. 纳米金刚石膜的晶粒生长控制及其刀具涂层应用的基础研究 [D]. 南京: 南京航空航天大学, 2013.

    XUE Haipeng. Basic research on the control of crystalline of nano-crystalline diamond films and its application in cutting tools [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013.
    [17] 张亚博, 白清顺, 何欣, 等. CVD金刚石刀具微铣削AA356铝合金的磨损分析 [J]. 金刚石与磨料磨具工程,2021,41(1):44-50.

    ZHANG Yabo, BAI Qingshun, HE Xin, et al. Wear analysis of CVD diamond tool in micro-milling AA356 aluminum alloy [J]. Diamond & Abrasives Engineering,2021,41(1):44-50.
    [18] 李挺璇. 高速乘坐式水稻插秧机液压传动特性研究 [D]. 南宁: 广西大学, 2014.

    LI Tingxuan. The hydraulic transmission characteristics research of high- speed riding rice transplanter [D]. Nanning: Guangxi University, 2014.
    [19] 赵德良, 张高峰, 李谟旺. SiCP/Al复合材料铣削加工工艺参数的优化实验研究 [J]. 机械制造, 2012, 50(8): 75-77.

    ZHAO Deliang, ZHANG Gaofeng, LI Mowang. Experimental study on optimization of milling process parameters of SiCP/Al composites [J]. Machinery, 2012, 50(8): 75-77.
    [20] 姜延欣. 球头铣刀高速铣削力及加工表面粗糙度的研究 [D]. 长春: 吉林大学, 2007.

    JIANG Yanxin. Research on cutting force and surface roughness of high-speed ball-end milling [D]. Changchun: Jilin University, 2007.
    [21] 肖行志, 郑侃, 廖文和, 等. 铣削参数对牙科玻璃陶瓷表面粗糙度影响分析 [J]. 硅酸盐通报,2013(11):2187-2193.

    XIAO Xingzhi, ZHENG Kan, LIAO Wenhe, et al. Effect of milling parameters on surface roughness in dental glass-ceramics [J]. Bulletin of the Chinese Ceramic Society,2013(11):2187-2193.
    [22] 杨舒, 许金凯, 李晓舟, 等. 高速微铣削Al2O3工程陶瓷工艺参数试验研究 [J]. 组合机床与自动化加工技术,2014(9):123-126.

    YANG Shu, XU Jinkai, LI Xiaozhou, et al. Experimental study on process parameters of high-speed micro-milling Al2O3 engineering ceramics [J]. Modular Machine Tool & Automatic Manufacturing Technique,2014(9):123-126.
    [23] 胡礼文. 难加工合金低温切削加工性及切屑形貌研究 [D]. 大连: 大连理工大学, 2019.

    HU Liwen. Research on the cryogenic cutting machinability and the chip morphology of difficult-to-cut alloys [D]. Dalian: Dalian University of Technology, 2019.
    [24] 马殿文, 沈春根, 张宇, 等. PCD刀具车削超硬铝合金的切削性能研究 [J]. 工具技术,2020,54(3):15-20. doi: 10.3969/j.issn.1000-7008.2020.03.004

    MA Dianwen, SHEN Chungen, ZHANG Yu, et al. Research on cutting performance of PCD tool for turning super-hard aluminum alloy [J]. Tool Engineering,2020,54(3):15-20. doi: 10.3969/j.issn.1000-7008.2020.03.004
    [25] 范思敏. 球头铣刀铣削表面形貌仿真与试验研究 [D]. 西安: 西安理工大学, 2020.

    FAN Simin. Simulation and experimental research on the surface topography of ball-end milling cutter [D]. Xi'an: Xi'an University of Technology, 2020.
  • 加载中
图(3) / 表(7)
计量
  • 文章访问数:  360
  • HTML全文浏览量:  100
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-07
  • 修回日期:  2022-05-30
  • 刊出日期:  2022-08-16

目录

    /

    返回文章
    返回