CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单晶SiC基片的磁流变化学复合抛光

梁华卓 付有志 何俊峰 徐兰英 阎秋生

梁华卓, 付有志, 何俊峰, 徐兰英, 阎秋生. 单晶SiC基片的磁流变化学复合抛光[J]. 金刚石与磨料磨具工程, 2022, 42(1): 129-135. doi: 10.13394/j.cnki.jgszz.2021.0108
引用本文: 梁华卓, 付有志, 何俊峰, 徐兰英, 阎秋生. 单晶SiC基片的磁流变化学复合抛光[J]. 金刚石与磨料磨具工程, 2022, 42(1): 129-135. doi: 10.13394/j.cnki.jgszz.2021.0108
LIANG Huazhuo, FU Youzhi, HE Junfeng, XU Lanying, YAN Qiusheng. Magnetorheological chemical compound polishing of single crystal SiC substrate[J]. Diamond &Abrasives Engineering, 2022, 42(1): 129-135. doi: 10.13394/j.cnki.jgszz.2021.0108
Citation: LIANG Huazhuo, FU Youzhi, HE Junfeng, XU Lanying, YAN Qiusheng. Magnetorheological chemical compound polishing of single crystal SiC substrate[J]. Diamond &Abrasives Engineering, 2022, 42(1): 129-135. doi: 10.13394/j.cnki.jgszz.2021.0108

单晶SiC基片的磁流变化学复合抛光

doi: 10.13394/j.cnki.jgszz.2021.0108
基金项目: 广东省基础与应用基础研究基金(2021A1515110528,2019A15150101720)。
详细信息
    通讯作者:

    梁华卓,男,1991年生,博士、讲师。主要研究方向:精密加工。E-mail: lianghuazhuo@gpnu.edu.cn

  • 中图分类号: TG58;TH162

Magnetorheological chemical compound polishing of single crystal SiC substrate

  • 摘要: 基于芬顿反应的磁流变化学复合抛光加工原理,对单晶SiC基片进行磁流变化学复合抛光试验,研究工艺参数对其抛光效果的影响。结果表明:随着金刚石磨粒粒径的增大,材料去除率先增大后减小,而表面粗糙度先减小后增大;随着磨粒质量分数的增大,材料去除率增大,而表面粗糙度先减小后增大;当羰基铁粉质量分数增大时,材料去除率增大,而表面粗糙度呈先减小后增大的趋势;随着氧化剂质量分数增大,材料去除率先增大后减小,而表面粗糙度呈现先减小后增大的趋势;加工间隙对材料去除率的影响较大,加工间隙为1.0 mm时,加工表面质量较好;随着工件转速和抛光盘转速增大,材料去除率均先增大后减小,表面粗糙度均先减小后增大。获得的优化的工艺参数为:磨粒粒径,1.0 μm;磨粒质量分数,5%;羰基铁粉质量分数,25%;过氧化氢质量分数,5%;加工间隙,1.0 mm;工件转速,500 r/min;抛光盘转速,20 r/min。采用优化的工艺参数对表面粗糙度约为40.00 nm的单晶SiC进行加工,获得表面粗糙度为0.10 nm以下的光滑表面。

     

  • 图  1  磁流变抛光装置

    Figure  1.  Magnetorheological finishing device

    图  2  磨粒粒径对抛光效果的影响

    Figure  2.  Effect of abrasive particle size on polishing

    图  3  磨粒质量分数对抛光效果的影响

    Figure  3.  Effect of abrasive mass fraction on polishing effect

    图  4  不同质量分数的磨粒抛光的SiC表面形貌

    Figure  4.  Surface morphology of SiC polished by abrasive particles with different mass fractions

    图  5  羰基铁粉质量分数对抛光效果的影响

    Figure  5.  Effect of carbonyl iron powder mass fraction on polishing effect

    图  6  过氧化氢质量分数对抛光效果的影响

    Figure  6.  Effect of mass fraction of hydrogen peroxide on polishing effect

    图  7  加工间隙对抛光效果的影响

    Figure  7.  Effect of machining gap on polishing

    图  8  不同加工间隙下的SiC表面形貌

    Figure  8.  Surface morphology of SiC with different machining gaps

    图  9  工件转速对抛光效果的影响

    Figure  9.  Effect of workpiece speed on polishing

    图  10  抛光盘转速对抛光效果的影响

    Figure  10.  Effect of polishing disc speed on polishing effect

    图  11  优化工艺的加工结果

    Figure  11.  Processing results of optimized process

    表  1  加工参数

    Table  1.   Machining parameters

    参数名称数值
    磨粒粒径 d / μm0.5,1.0,3.0,5.0
    磨粒质量分数 ω1 / %1,3,5,7
    羰基铁粉质量分数 ω2 / %20,25,30,35
    过氧化氢质量分数 ω3 / %1,3,5,7
    加工间隙 l / mm0.6,0.8,1.0,1.2
    工件转速 vs / (r∙min−1300,400,500,600
    抛光盘转速 vw / (r∙min−110,20,30,40
    下载: 导出CSV
  • [1] RAYNAUD C, TOURNIER D, MOREL H, et al. Comparison of high voltage and high temperature performances of wide bandgap semiconductors for vertical power devices [J]. Diamond and Related Materials,2010,19(1):1-6. doi: 10.1016/j.diamond.2009.09.015
    [2] ZHOU L, AUDURIER V, PIROUZ P, et al. Chemomechanical polishing of silicon carbide [J]. Journal of the Electrochemical Society,1997,144(6):161-163. doi: 10.1149/1.1837711
    [3] OKUMURA H. Present status and future prospect of widegap semiconductor high-power devices [J]. Japanese Journal of Applied Physics,2006,45(10A):7565-7586. doi: 10.1143/JJAP.45.7565
    [4] PUSHPAKARAN B N, SUBBURAJ A S, BAYNE S B, et al. Impact of silicon carbide semiconductor technology in photovoltaic energy system [J]. Renewable and Sustainable Energy Reviews,2016,55:971-989. doi: 10.1016/j.rser.2015.10.161
    [5] AIDA H, DOI T, TAKEDA H, et al. Ultraprecision CMP for sapphire, GaN, and SiC for advanced optoelectronics materials [J]. Current Applied Physics,2012,12(9):41-46.
    [6] SHI X, PAN G, ZHOU Y, et al. Extended study of the atomic step-terrace structure on hexagonal SiC(0001) by chemical-mechanical planarization [J]. Applied Surface Science,2013,284:195-206. doi: 10.1016/j.apsusc.2013.07.080
    [7] 叶子凡, 周艳, 徐莉, 等. 紫外LED辅助的4H-SiC化学机械抛光 [J]. 纳米技术与精密工程,2017,15(5):342-346.

    YE Zifan, ZHOU Yan, XU Li, et al. Chemical mechanical polishing of 4H-SiC wafer with UV-LED light [J]. Nanotechnology and Precision Engineering,2017,15(5):342-346.
    [8] 徐少平. 基于芬顿反应的单晶SiC集群磁流变化学复合抛光研究 [D]. 广州: 广东工业大学, 2016.

    XU Shaoping. Research on chemical cluster magnetorheological compound polishing of single-crystal SiC based on Fenton reaction [D]. Guangzhou: Guangdong University of Technology, 2016.
    [9] JAIN V K, RANJAN P, SURI V K, et al. Chemo-mechanical magnetorheological finishing (CMMRF) of silicon for microelectronics applications [J]. CIRP Annals-Manufacturing Technology,2010,59(1):323-328. doi: 10.1016/j.cirp.2010.03.106
    [10] RANJAN P, BALASUBRAMANIAM R, SURI V K, et al. Development of chemo-mechanical magnetorheological finishing process for super finishing of copper alloy [J]. International Journal of Manufacturing Technology & Management,2013,27(4-6):130-141.
    [11] 尹韶辉, 王永强, 李叶鹏, 等. 蓝宝石基片的磁流变化学抛光试验研究 [J]. 机械工程学报,2016,52(5):80-87. doi: 10.3901/JME.2016.05.080

    YIN Shaohui, WANG Yongqiang, LI Yepeng, et al. Experimental study on magnetorheological chemical polishing for sapphire substrate [J]. Journal of Mechanical Engineering,2016,52(5):80-87. doi: 10.3901/JME.2016.05.080
    [12] NAM S, RENGANATHAN V, TRATNYEK P G. Substituent effects on azo dye oxidation by the FeIII-EDTA-H2O2 system[J]. Chemosphere, 2001, 45(1): 59-65.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  138
  • HTML全文浏览量:  20
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 录用日期:  2021-11-11
  • 收稿日期:  2021-08-11
  • 修回日期:  2021-11-01

目录

    /

    返回文章
    返回