CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超薄切割片的加工变形研究现状

邹芹 张呈祥 李艳国 黎克楠

邹芹, 张呈祥, 李艳国, 黎克楠. 超薄切割片的加工变形研究现状[J]. 金刚石与磨料磨具工程, 2022, 42(1): 119-128. doi: 10.13394/j.cnki.jgszz.2021.0102
引用本文: 邹芹, 张呈祥, 李艳国, 黎克楠. 超薄切割片的加工变形研究现状[J]. 金刚石与磨料磨具工程, 2022, 42(1): 119-128. doi: 10.13394/j.cnki.jgszz.2021.0102
ZOU Qin, ZHANG Chengxiang, LI Yanguo, LI Kenan. Research present situation of machining deformation of ultra-thin dicing blades[J]. Diamond &Abrasives Engineering, 2022, 42(1): 119-128. doi: 10.13394/j.cnki.jgszz.2021.0102
Citation: ZOU Qin, ZHANG Chengxiang, LI Yanguo, LI Kenan. Research present situation of machining deformation of ultra-thin dicing blades[J]. Diamond &Abrasives Engineering, 2022, 42(1): 119-128. doi: 10.13394/j.cnki.jgszz.2021.0102

超薄切割片的加工变形研究现状

doi: 10.13394/j.cnki.jgszz.2021.0102
详细信息
    作者简介:

    邹芹,女,1978年生,教授、博士研究生导师。主要研究方向:超硬工具。E-mail: zq@ysu.edu.cn

    通讯作者:

    李艳国,男,1978年生,副研究员、硕士研究生导师。主要研究方向:陶瓷及其复合材料。E-mail: lyg@ysu.edu.cn

  • 中图分类号: TG580.61+4

Research present situation of machining deformation of ultra-thin dicing blades

  • 摘要: 超薄切割片在工作中极易出现径向加工变形。从应力和变形的理论分析、有限元模拟分析和试验研究等方面,对超薄切割片的加工变形研究现状进行总结。此外,分析研究中存在的问题,介绍具有相似结构的砂轮和圆锯片的相关研究成果。结果发现:切割片转速对超薄切割片变形影响的研究比较系统,但磨削深度和进给速度对其影响的相关研究还有一定的差距。同时,切入工件时测量方法的缺失也限制了研究的深入。因此,需要不断完善理论公式并充分应用有限元模拟,持续推进相关研究,优化和补偿超薄切割片的变形,提高工件的加工精度。

     

  • 图  1  常见的超薄切割片型号

    Figure  1.  Common ultra-thin dicing blade models

    图  2  离心力下超薄切割片的受力模型

    Figure  2.  Force model of ultra-thin dicing blade under centrifugal force

    图  3  不同转速下的动态直径[14]

    Figure  3.  Dynamic diameter at different speeds[14]

    图  4  弹/塑性变形区域示意图

    Figure  4.  Schematic diagram of elastic/plastic deformation area

    图  5  等效应力云图[15]

    Figure  5.  Equivalent stress nephogram[15]

    图  6  动态直径测量示意图

    Figure  6.  Schematic diagram of dynamic diameter measurement

  • [1] 冯克明, 王庆伟. 超薄砂轮高速精密切割磨削影响因素系统分析 [J]. 模具制造,2016,16(12):73-79.

    FENG Keming, WANG Qingwei. Systematic analysis on the influencing factors for super-speed precision cutting-grinding using the super-thin grinding wheel [J]. Die & Mould Manufacture,2016,16(12):73-79.
    [2] 冯克明, 赵金坠. 先进磨削技术应用现状与展望 [J]. 轴承,2020(4):60-67.

    FENG Keming, ZHAO Jinzhui. Present situation and prospect of advanced grinding technology application [J]. Bearing,2020(4):60-67.
    [3] 侯长红. 电子信息行业用超硬材料切割工具综述 [J]. 金刚石与磨料磨具工程,2010,30(1):60-62.

    HOU Changhong. Summary of superabrasive cutting tools for used in electronic information industry [J]. Diamond & Abrasives Engineering,2010,30(1):60-62.
    [4] 轩闯, 项刚强, 廖燕玲, 等. 半导体加工用金刚石工具现状 [J]. 超硬材料工程,2021,33(1):41-49.

    XUAN Chuang, XIANG Gangqiang, LIAO Yanling, et al. Current status of diamond tools for semiconductor processing industry [J]. Superhard Material Engineering,2021,33(1):41-49.
    [5] ZHONG Y, DAI Y, XIAO H, et al. Experimental study on surface integrity and subsurface damage of fused silica in ultra-precision grinding [J]. The International Journal of Advanced Manufacturing Technology,2021,115:4021-4033. doi: 10.1007/s00170-021-07439-y
    [6] 马岩, 袁慧珠, 鞠仁忠, 等. 金刚石砂轮刀片划切过程性能分析与三维建模 [J]. 金刚石与磨料磨具工程,2009(5):74-77.

    MA Yan, YUAN Huizhu, JU Renzhong, et al. Research of performance and three-dimensional modeling of diamond blade [J]. Diamond & Abrasives Engineering,2009(5):74-77.
    [7] 黎克楠. 超薄砂轮高速动态行为与新型结合剂设计研究 [D]. 秦皇岛: 燕山大学, 2019.

    LI Kenan. Study on high-speed dynamic behavior of super-thin dicing blades and design of new bond [D]. Qinhuangdao: Yanshan University, 2019.
    [8] 任敬心, 华定安. 磨削原理 [M]. 北京: 电子工业出版社, 2011.

    REN Jingxin, HUA Dingan. Grinding principle [M]. Beijing: Publishing House of Electronics Industry, 2011.
    [9] LI C, ZHANG L, DING J, et al. Kinematic modeling of surface topography ground by an electroplated diamond wheel [J]. The International Journal of Advanced Manufacturing Technology,2021,114:2753-2765. doi: 10.1007/s00170-021-06944-4
    [10] TAWAKOLI T, REINECKE H, VESALI A. An experimental study on the dynamic behavior of grinding wheels in high efficiency deep grinding [C]. Amsterdam: Procedia CIRP, 2012, 1: 382-387.
    [11] 徐芝纶. 弹性力学: 上册 [M]. 北京: 高等教育出版社, 2016.

    XU Zhilun. Elasticity: Volume I [M]. Beijing: Higher Education Press, 2016.
    [12] HU S. Study on the elastic-plastic interface and large deformation of axisymmetric disks under rotating status [J]. Applied Clay Science,2013,79(7):41-48.
    [13] 张磊, 徐晓辉. 磨削速度和孔径比对砂轮强度与变形的影响分析 [J]. 应用科技,2010,37(7):35-39.

    ZHANG Lei, XU Xiaohui. Influence of grinding speed and on the grinding wheel's strength and deformation [J]. Applied Science and Technology,2010,37(7):35-39.
    [14] LI K, WANG M, CHEN F, et al. Analysis of the dynamic diameter of superthin diamond blades in the high speed and precision dicing process [J]. International Journal of Precision Engineering and Manufacturing,2019,20(7):1071-1081. doi: 10.1007/s12541-019-00128-7
    [15] MA Y. Research on performance of diamond blade in dicing saw based on ANSYS method [J]. Journal of Advanced Manufacturing Systems,2012,11(2):125-133. doi: 10.1142/S0219686712500114
    [16] 赵忠虎, 阎红霞. 圆盘匀速转动时最大径向位移在何处? [J]. 力学与实践,2006(2):81-83.

    ZHAO Zhonghu, YAN Hongxia. Where is the maximum radial displacement when the disc rotates at a constant speed? [J]. Mechanics in Engineering,2006(2):81-83.
    [17] 邹芹, 关勇, 李艳国, 等. TiAl合金及其复合材料的研究进展与发展趋势 [J]. 燕山大学学报,2020,44(2):95-107.

    ZOU Qin, GUAN Yong, LI Yanguo, et al. Advances and perspectives of TiAl alloy and its composites [J]. Journal of Yanshan University,2020,44(2):95-107.
    [18] 李工, 戴凤祥, 张翼飞, 等. Al系高熵合金高温氧化性能研究进展 [J]. 燕山大学学报,2021,45(3):189-201.

    LI Gong, DAI Fengxiang, ZHANG Yifei, et al. Research progress of high-temperature oxidation properties of Al-based high entropy alloys [J]. Journal of Yanshan University,2021,45(3):189-201.
    [19] 胡满凤, 谢晋, 刘继楠, 等. 导光均光微槽透镜阵列精密磨削及其热压微成型 [J]. 机械工程学报,2017,53(23):190-196. doi: 10.3901/JME.2017.23.190

    HU Manfeng, XIE Jin, LIU Jinan, et al. Precision grinding and micro hot embossing of the microgroove lens array for light transmitting and uniforming [J]. Journal of Mechanical Engineering,2017,53(23):190-196. doi: 10.3901/JME.2017.23.190
    [20] EKHTERAEITOUSSI H, REZAEIFARIMANI M. Elasto-plastic deformation analysis of rotating disc beyond its limit speed [J]. International Journal of Pressure Vessels and Piping,2012,89(1):170-177.
    [21] STRASHNOV S, ALEXANDROV S, LANG L. Description of residual stress and strain fields in FGM hollow disc subject to external pressure [J]. Materials,2019,12:440-453. doi: 10.3390/ma12030440
    [22] JALALI M, SHAHRIARI B. Elastic stress analysis of rotating functionally graded annular disk of variable thickness using finite difference method [J]. Mathematical Problems in Engineering, 2018, 2018: 1871674.
    [23] CALLIOGLU H, SAYER M, DEMIR E. Elastic-plastic stress analysis of rotating functionally graded discs [J]. Thin-Walled Structures,2015,94(9):38-44.
    [24] THAWAIT A, SONDHI L, SANYAL S, et al. Stress and deformation analysis of clamped functionally graded rotating disks with variable thickness [J]. Mechanics and Mechanical Engineering,2019,23:202-211. doi: 10.2478/mme-2019-0027
    [25] CALLIOGLU H, TOPCU M, TARAKCILAR A. Elastic-plastic stress analysis of an orthotropic rotating disc [J]. International Journal of Mechanical Sciences,2006,48(9):985-990. doi: 10.1016/j.ijmecsci.2006.03.008
    [26] 彭旭龙, 杨建强. 各向异性功能梯度夹层圆环的弹性分析 [J]. 长沙理工大学学报(自然科学版),2015,12(4):50-55.

    PENG XUlong, YANG Jianqiang. Elastic analysis of functionally graded polar orthotropic sandwich circular ring [J]. Journal of Changsha University of Science and Technology (Natural Science),2015,12(4):50-55.
    [27] KAMAL S, DIXIT U. Design of a disk-mandrel assembly for achieving rotational autofrettage in the disk [J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science,2021,235(13):1-16.
    [28] KHALILI A, PEDDIESON J. Evaluation of elastic compensation using elastic/plastic rotating circular disk problems [J]. Mechanics Research Communications,2014,55(1):89-94.
    [29] LIN B, ZHOU P, WANG Z, et al. Analytical elastic-plastic cutting model for predicting grain depth-of-cut in ultrafine grinding of silicon wafer [J]. Journal of Manufacturing Science and Engineering,2018,140:121001-121007. doi: 10.1115/1.4041245
    [30] 董世明, 李一凡, 徐积刚. 不同加载条件下平面应力圆盘应力和位移的全场解 [J]. 工程科学与技术,2017,49(2):54-61.

    DONG Shiming, LI Yifan, XU Jigang. Full-field solution to stresses and displacements in the plane stress disk under different loading conditions [J]. Advanced Engineering Sciences,2017,49(2):54-61.
    [31] 王启智. 对圆盘、圆环和圆孔研究与应用的感悟 [J]. 力学与实践,2015,37(3):372-376.

    WANG Qizhi. Perception about the study and application of disc, circular rings and circular hole [J]. Mechanics in Engineering,2015,37(3):372-376.
    [32] 谢桂芝, 黄含, 盛晓敏, 等. 工程陶瓷高效深磨磨削力和损伤的研究 [J]. 湖南大学学报(自然科学版),2008, 38(5):26-30.

    XIE Guizhi, HUANG Han, SHENG Xiaomin, et al. Investigation on the grinding force and the ground damages in the high efficiency deep grinding of advanced ceramics [J]. Journal of Hunan University (Natural Sciences),2008, 38(5):26-30.
    [33] 杨绪啟, 姚巨坤, 田欣利, 等. 平面碳化硅深切削缓进给磨削力的正交试验研究 [J]. 机床与液压,2018,46(11):96-100.

    YANG Xuqi, YAO Jukun, TIAN Xinli, et al. Orthogonal experiment research on cutting deeply and feed slowly grinding force of plane SiC [J]. Machine Tool & Hydraulics,2018,46(11):96-100.
    [34] 吴玉厚, 沙勇, 李颂华, 等. 氮化硅陶瓷磨削力对表面质量的影响 [J]. 陶瓷学报,2019,40(6):718-724.

    WU Yuhou, SHA Yong, LI Songhua, et al. Experimental study on the effect of grinding force of silicon nitride ceramic on a surface quality [J]. Journal of Ceramics,2019,40(6):718-724.
    [35] 王克军, 刘璇, 李辉, 等. 硬脆材料端面微磨削的磨削力及实验研究 [J]. 科学技术与工程,2016,16(29):212-216.

    WANG Kejun, LIU Xuan, LI Hui, et al. Modeling and experimental research on micro end grinding force of hard brittle material [J]. Science Technology and Engineering,2016,16(29):212-216.
    [36] WU J, CHEN G, CHEN F. Positioning accuracy control of dual-axis dicing saw for machining semiconductor chip [J]. The International Journal of Advanced Manufacturing Technology,2020,109:2299-2310. doi: 10.1007/s00170-020-05798-6
    [37] 张庆玲, 张荣强, 金淼. 应变控制方式下ZG270-500材料特性试验研究 [J]. 燕山大学学报,2019,43(5):449-454.

    ZHANG Qingling, ZHANG Rongqiang, JIN Miao. Experimental study of ZG270-500 material characteristics under strain control modes [J]. Journal of Yanshan University,2019,43(5):449-454.
    [38] 李蓓智. 高速高质量磨削理论、工艺、装备与应用 [M]. 上海: 上海科学技术出版社, 2012.

    LI Beizhi. Theory, technology, equipment and application of high-speed and high-quality grinding [M]. Shanghai: Shanghai Science and Technology Press, 2012.
    [39] 李阳. 金刚石圆锯片的力学性能研究及工艺优化 [D]. 济南: 济南大学, 2017.

    LI Yang. Research on the mechanical performance and process optimization of diamond circular saw blade [D]. Jinan: Jinan University, 2017.
    [40] 张进生, 王志, 吴军涛. 基于ANSYS的组合结构金刚石圆锯片基体离心力效应的分析 [J]. 金刚石与磨料磨具工程,2007(3):9-14.

    ZHANG Jinsheng, WANG Zhi, WU Juntao. Analysis by ANSYS for effect of centrifugal force on combined diamond saw blade [J]. Diamond & Abrasives Engineering,2007(3):9-14.
    [41] SONDHI L, THAWAIT A, SANYAL S, et al. Stress and deformation analysis of functionally graded varying thickness profile orthotropic rotating disk [J]. Materials Today: Proceedings,2020,33:5455-5460. doi: 10.1016/j.matpr.2020.03.258
    [42] KIZAKI T, HAO Y, OHASHI T, et al. Capability of a grinding wheel reinforced in hoop direction with carbon fiber [J]. CIRP Annals-Manufacturing Technology,2020,69:285-288. doi: 10.1016/j.cirp.2020.04.105
    [43] 代东波. 超高速磨削CBN砂轮径向形变量研究 [D]. 广州: 广州大学, 2016.

    DAI Dongbo. Study on radial deformation of CBN grinding wheel in ultra-high speed grinding [D]. Guangzhou: Guangzhou University, 2016.
    [44] 高东恩. 超高速砂轮基体动静特性的研究 [D]. 郑州: 河南工业大学, 2019.

    GAO Dongen. Research on the dynamic and static characteristics of ultra-high speed grinding wheel body [D]. Zhengzhou: Henan University of Technology, 2019.
    [45] YAMADA T, MORGAN M, LEE H, et al. Calculation of effective ground depth of cut by means of grinding process model [J]. Key Engineering Materials,2012,496:7-12.
    [46] JIANG B, SHEN J, XU X. Study on force characteristics for high speed sawing of quartz glass with diamond blade [J]. Materials Science Forum, 2014, 800/801: 144-149.
    [47] SHEN J, LU L, GONG Y, et al. Study on the influence of variation of contact arc zone on the single-pass sawing of sapphire wafer [J]. International Journal of Precision Engineering and Manufacturing,2018,19(9):1265-1271. doi: 10.1007/s12541-018-0150-8
  • 加载中
图(6)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  23
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 录用日期:  2021-11-15
  • 收稿日期:  2021-09-02
  • 修回日期:  2021-09-25

目录

    /

    返回文章
    返回