CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半球谐振子曲面加工干涉分析及其超精密磨削工艺

刘赫男 秦彪 王廷章 田金川 陈明君

刘赫男, 秦彪, 王廷章, 田金川, 陈明君. 半球谐振子曲面加工干涉分析及其超精密磨削工艺[J]. 金刚石与磨料磨具工程, 2022, 42(1): 10-17. doi: 10.13394/j.cnki.jgszz.2021.0099
引用本文: 刘赫男, 秦彪, 王廷章, 田金川, 陈明君. 半球谐振子曲面加工干涉分析及其超精密磨削工艺[J]. 金刚石与磨料磨具工程, 2022, 42(1): 10-17. doi: 10.13394/j.cnki.jgszz.2021.0099
LIU Henan, QIN Biao, WANG Tingzhang, TIAN Jinchuan, CHEN Mingjun. Interference analysis and ultra-precision grinding technology of hemispherical resonator curved surface machining[J]. Diamond & Abrasives Engineering, 2022, 42(1): 10-17. doi: 10.13394/j.cnki.jgszz.2021.0099
Citation: LIU Henan, QIN Biao, WANG Tingzhang, TIAN Jinchuan, CHEN Mingjun. Interference analysis and ultra-precision grinding technology of hemispherical resonator curved surface machining[J]. Diamond & Abrasives Engineering, 2022, 42(1): 10-17. doi: 10.13394/j.cnki.jgszz.2021.0099

半球谐振子曲面加工干涉分析及其超精密磨削工艺

doi: 10.13394/j.cnki.jgszz.2021.0099
基金项目: 国家重点研发计划(2018YFB1107600) 。
详细信息
    作者简介:

    陈明君,男,1971年生,教授。主要研究方向:精密超精密加工技术与工艺装备。E-mail: chenmj@hit.edu.cn

  • 中图分类号: TG58; TG74

Interference analysis and ultra-precision grinding technology of hemispherical resonator curved surface machining

  • 摘要: 半球谐振子作为半球谐振陀螺的核心部件,其加工精度和表面质量直接影响半球谐振陀螺的工作精度和使用寿命。为解决半球谐振子加工难题,提高半球谐振陀螺的性能,从半球谐振子的结构特征出发,对谐振子加工过程中的干涉进行理论分析;再根据球头砂轮磨削区域分布的特点进行磨削轨迹规划,确定谐振子不同磨削阶段球头砂轮的最佳转角;最后在自研的半球谐振子超精密磨削机床上进行加工实验。超精密磨削后的谐振子表面粗糙度(Ra值)由0.6158 μm提升至0.0402 μm,面形精度(PV值)由4.5904 μm提升至0.3390 μm;经磁流变抛光后谐振子表面粗糙度(Ra值)进一步提高至0.0032 μm。研究表明:采用轨迹规划后的磨削工艺可避免砂轮与工件间的干涉,并加工出高质量的半球谐振子零件。

     

  • 图  1  半球谐振陀螺结构组成及核心部件

    Figure  1.  Structural composition and core components of hemispherical resonator gyroscope

    图  2  半球谐振子加工过程示意图

    Figure  2.  Schematic diagram of machining process of hemispherical resonator

    图  3  半球谐振子超精密磨削加工数控机床

    Figure  3.  Hemispherical resonator ultra-precision grinding CNC machine tool

    图  4  球头砂轮球心对中示意图

    Figure  4.  Schematic diagram of centering of ball-end grinding wheel

    图  5  球头砂轮与半球谐振子干涉示意图

    Figure  5.  Schematic diagram of interference between ball-end grinding wheel and hemispherical resonator

    图  6  半球谐振子干涉分析数学模型

    Figure  6.  Interference mathematical analysis model of hemispherical resonator

    图  7  球头砂轮磨削带和磨削位置角

    Figure  7.  Grinding belt and grinding position angle of ball-end grinding wheel

    图  8  C轴转角对砂轮表面磨削区域分布的影响规律

    Figure  8.  Effect of C-axis rotation angle on the grinding area distribution of grinding wheel surface

    图  9  轨迹规划后砂轮磨削点分布

    Figure  9.  Distribution of grinding wheel grinding points after trajectory planning

    图  10  半球谐振子超精密磨削加工过程

    Figure  10.  Ultra-precision grinding process for hemispherical resonator

    图  11  半球谐振子超精密磨削加工前后对比

    Figure  11.  Hemispherical resonator before and after ultra-precision grinding

    图  12  半球谐振子抛光后的表面质量

    Figure  12.  Surface quality of hemispherical resonator after polishing

    表  1  某型号半球谐振子结构参数

    Table  1.   Structural parameters of certain type of hemispherical resonator

    尺寸参数数值
    半球壳外表面半径 rs / mm15
    半球壳壁厚 t / mm0.8
    中心杆直径 d / mm7
    外圆角半径 roa / mm2
    内圆角半径 ria / mm2
    下载: 导出CSV

    表  2  不同磨削阶段的C轴转角范围

    Table  2.   C-axis rotation angle range in different grinding sections

    磨削阶段 C轴转角 αC / (°)
    内圆杆和内圆角 0.0~11.1
    内球面 −8.8~0
    外球面、外圆角和外圆杆 66.8~90.0
    下载: 导出CSV

    表  3  不同磨削阶段对应的C轴转角

    Table  3.   C-axis rotation angles in different grinding sections

    磨削阶段 C轴转角 αC / (°)
    内圆杆和内圆角 5
    内球面 −4
    外球面、外圆角和外圆杆 70
    下载: 导出CSV

    表  4  半球谐振子超精密磨削加工参数

    Table  4.   Ultra-precision grinding processing parameters of hemispherical resonator

    磨削参数数值
    进给速度 vf / (μm·s−1) 15
    砂轮主轴转速 ωg / (m·s−1) 71 000
    工件主轴转速 ωw / (m·s−1) 30
    磨削深度 ap / μm 1
    砂轮磨粒直径 rp / μm 3
    下载: 导出CSV
  • [1] ZHANG S J, ZHOU Y P, ZHANG H J, et al. Advances in ultra-precision machining of micro-structured functional surfaces and their typical applications [J]. International Journal of Machine Tools and Manufacture,2019,142:16-41. doi: 10.1016/j.ijmachtools.2019.04.009
    [2] ZHU L L, LI Z X, FANG F Z, et al. Review on fast tool servo machining of optical freeform surfaces [J]. International Journal of Advanced Manufacturing Technology,2018,95:2071-2092. doi: 10.1007/s00170-017-1271-4
    [3] 薛连莉, 翟峻仪, 葛悦涛. 2020年国外惯性技术发展与回顾 [J]. 导航定位与授时,2021,3(3):59-67. doi: 10.19306/j.cnki.2095-8110.2021.03.008

    XUE Lianli, ZHAI Junyi, GE Yuetao. Development and review of foreign inertial technology in 2020 [J]. Navigation Positioning and Timing,2021,3(3):59-67. doi: 10.19306/j.cnki.2095-8110.2021.03.008
    [4] 陈明君, 王廷章, 刘赫男, 等. 高精度小型陀螺仪关键器件加工技术研究进展 [J]. 哈尔滨工业大学学报,2020,52(6):218-226.

    CHEN Mingjun, WANG Tingzhang, LIU Henan, et al. Research process on fabrication techniques for high precision micro gyroscope key component [J]. Journal of Harbin Institute of Technology,2020,52(6):218-226.
    [5] 彭凯, 方针, 徐思宇, 等. 熔融石英半球谐振子精密磨削工艺研究 [J]. 压电与声光,2021,43(2):294-298.

    PENG Kai, FANG Zhen, XU Siyu, et al. Research on precision grinding process of fused silica hemispherical resonator [J]. Piezoelectrics and Acoustooptics,2021,43(2):294-298.
    [6] 徐志强, 刘建梅, 王振, 等. 石英半球谐振子精密加工技术探讨 [J]. 导航与控制,2019,18(2):69-76. doi: 10.3969/j.issn.1674-5558.2019.02.011

    XU Zhiqiang, LIU Jianmei, WANG Zhen, et al. Discussion on precision machining technology of quartz hemispherical harmonic oscillator [J]. Navigation and Control,2019,18(2):69-76. doi: 10.3969/j.issn.1674-5558.2019.02.011
    [7] CHEN M J, LI Z A, YU B, et al. On-machine precision preparation and dressing of ball-headed diamond wheel for the grinding of fused silica [J]. Chinese Journal of Mechanical Engineering,2013,26(5):982-987. doi: 10.3901/CJME.2013.05.982
    [8] LIU H N, CHEN M J, YU B, et al. Configuration design and accuracy analysis of a novel magnetorheological finishing machine tool for concave surfaces with small radius of curvature [J]. Journal of Mechanical Science and Technology,2016,30(7):3301-3311. doi: 10.1007/s12206-016-0639-y
    [9] CHEN M J, LIU H N, SU Y R, et al. Design and fabrication of a novel magnetorheological finishing process for small concave surfaces using small ball-end permanent-magnet polishing head [J]. International Journal of Advanced Manufacturing Technology,2016,83:823-834. doi: 10.1007/s00170-015-7573-5
    [10] WANG T Z, WU C Y, LIU H N, et al. On-machine electric discharge truing of small ball-end fine diamond grinding wheels [J]. Journal of Materials Processing Technology,2019,277:116472.
    [11] WANG T Z, CHEN M J, LIU H N, et al. Ultra-precision grinding machine design and application in grinding the thin-walled complex component with small ball-end diamond wheel [J]. International Journal of Advanced Manufacturing Technology,2019,101:2097-2110. doi: 10.1007/s00170-018-3102-7
    [12] XIANG S T, ALTINTAS Y. Modeling and compensation of volumetric errors for five-axis machine tools [J]. International Journal of Machine Tools and Manufacture,2016,101:65-78. doi: 10.1016/j.ijmachtools.2015.11.006
    [13] WANG T Z, LIU H N, WU C Y, et al. Three-dimensional modeling and theoretical investigation of grinding marks on the surface in small ball-end diamond wheel grinding [J]. International Journal of Mechanical Sciences,2020,173:105467. doi: 10.1016/j.ijmecsci.2020.105467
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  1064
  • HTML全文浏览量:  630
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-11
  • 修回日期:  2022-01-26
  • 录用日期:  2022-01-18
  • 网络出版日期:  2022-03-17
  • 刊出日期:  2022-03-17

目录

    /

    返回文章
    返回