CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硬质合金刀片复杂刃口的柔性纤维辅助力流变钝化抛光试验研究

邵蓝樱 柯明峰 王佳焕 吕冰海 王旭 袁巨龙

邵蓝樱, 柯明峰, 王佳焕, 吕冰海, 王旭, 袁巨龙. 硬质合金刀片复杂刃口的柔性纤维辅助力流变钝化抛光试验研究[J]. 金刚石与磨料磨具工程, 2022, 42(1): 1-9. doi: 10.13394/j.cnki.jgszz.2021.0094
引用本文: 邵蓝樱, 柯明峰, 王佳焕, 吕冰海, 王旭, 袁巨龙. 硬质合金刀片复杂刃口的柔性纤维辅助力流变钝化抛光试验研究[J]. 金刚石与磨料磨具工程, 2022, 42(1): 1-9. doi: 10.13394/j.cnki.jgszz.2021.0094
SHAO Lanying, KE Mingfeng, WANG Jiahuan, LYU Binghai, WANG Xu, YUAN Julong. Experimental study on flexible fiber assisted stress rheological passivation and polishing of complex edge of cemented carbide insert[J]. Diamond &Abrasives Engineering, 2022, 42(1): 1-9. doi: 10.13394/j.cnki.jgszz.2021.0094
Citation: SHAO Lanying, KE Mingfeng, WANG Jiahuan, LYU Binghai, WANG Xu, YUAN Julong. Experimental study on flexible fiber assisted stress rheological passivation and polishing of complex edge of cemented carbide insert[J]. Diamond &Abrasives Engineering, 2022, 42(1): 1-9. doi: 10.13394/j.cnki.jgszz.2021.0094

硬质合金刀片复杂刃口的柔性纤维辅助力流变钝化抛光试验研究

doi: 10.13394/j.cnki.jgszz.2021.0094
基金项目: 国家自然科学基金(52175441,52175442,51935008)
详细信息
    通讯作者:

    吕冰海,男,1978 年生,博士、研究员、博士研究生导师。主要研究方向:精密与超精密加工技术与智能装备。E-mail: icewater7812@126.com

  • 中图分类号: TG58; TG71

Experimental study on flexible fiber assisted stress rheological passivation and polishing of complex edge of cemented carbide insert

  • 摘要:

    为实现硬质合金刀片复杂形状刃口的一致性钝化,提升刀片使用性能和寿命,采用柔性纤维辅助力流变抛光方法,利用非牛顿流体在剪切应力作用下的流变特性和柔性纤维的控流作用,对硬质合金刀片复杂形状刃口进行抛光。以刃口钝圆半径偏离值K为评价指标,用田口法分析抛光转速、纤维密度、纤维与刀片接触长度等工艺参数对刃口钝圆半径及其一致性的影响,并采用方差分析法评估各因素的权重,综合抛光参数对不同位置切削刃的影响,得到的最优工艺参数组合为纤维密度为200~250 根/cm2,接触长度为4 mm,抛光转速为55 r/min。在最优工艺参数组合下抛光10 min,7个切削刃的钝圆半径均能达到(50.0±5.0) μm的钝化要求,且其切削刃表面粗糙度Ra从(118.00 ± 10.00) nm降至(9.35 ± 0.75) nm,刃口完整无缺陷。

     

  • 图  1  柔性纤维形成的抛光液增稠及控流示意图

    Figure  1.  Schematic diagram of thickening and flow control of polishing solution formed by flexible fiber

    图  2  硬质合金刀片FF-SRP钝化抛光原理图

    Figure  2.  Schematic diagram of FF-SRP passivation and polishing of cemented carbide blade

    图  3  FF-SRP 试验装置示意图和实物图

    Figure  3.  Schematic diagram and physical diagram of FF-SRP experimental device

    图  4  刃口钝圆半径测量位置

    Figure  4.  Measuring positions of passivation radius of cutting edges

    图  5  SRP 抛光液的流变曲线

    Figure  5.  Rheological curve of SRP slurry

    图  6  纤维密度对QA,QB,QE,QF 刃钝化效果的影响

    Figure  6.  Effects of fiber densities on passivation effect of QA,QB,QE,QF blades

    图  7  接触长度对QA,QB,QE,QF 刃钝化效果的影响

    Figure  7.  Effects of contact lengths on passivation effect of QA,QB,QE and QF blades

    图  8  抛光转速对QA,QB,QE,QF刃钝化效果的影响

    Figure  8.  Effects of polishing speeds on passivation effect of QA,QB,QE and QF blades

    图  9  QA,QB,QE,QF 切削刃的方差分析结果

    Figure  9.  Variance analysis results of QA,QB,QE and QF cutting blades

    图  10  QA,QB,QE,QF切削刃钝化抛光前后的刃口钝圆半径和超景深显微镜图像

    Figure  10.  Passivation radius and ultra-depth-of-field microscope images of QA,QB,QE and QF cutting edges before and after passivation polishing

    图  11  刀片各切削刃的K值变化图

    Figure  11.  Variation of K values of each cutting blades

    图  12  QF和QG刃口的SEM形貌图

    Figure  12.  SEM images of QF and QG cutting edges

    表  1  试验条件

    Table  1.   Experimental conditions

    试验参数 条件或取值
    齿根刃初始半径 r1 / μm 36.0 ± 3.0
    齿尖刃初始半径 r2 / μm 40.0 ± 2.0
    抛光转速 n1 / (r·min−1) 40,55,70
    夹具轴转速 n2 / (r·min−1) 25
    金刚石磨粒粒度代号 M2.5/5
    金刚石磨粒质量分数 ω / % 6
    纤维密度 低,中,高
    接触长度 L / mm 2,4,6
    夹具倾斜角度 θ / (°) 4
    下载: 导出CSV

    表  2  正交试验的因素和水平

    Table  2.   Factors and levels of orthogonal experiment

    水平 因素
    纤维密度
    U
    接触长度
    V
    抛光转速
    W
    1 2 40
    2 4 55
    3 6 70
    下载: 导出CSV

    表  3  正交试验参数组合及试验结果

    Table  3.   Combinations of orthogonal experimental parameters and experimental results

    试验序号 因素 结果
    U V W KA ${\left( {S/N} \right)_{{{\rm{Q}}_{\rm{A}}}}} $ KB ${\left( {S/N} \right)_{{{\rm{Q}}_{\rm{B}}}}} $ KE ${\left( {S/N} \right)_{{{\rm{Q}}_{\rm{E}}}}} $ KF ${\left( {S/N} \right)_{{{\rm{Q}}_{\rm{F}}}}} $
    1 2 40 2.82 −9.00 4.35 −12.77 1.99 −5.96 5.59 −14.94
    2 4 55 2.35 −7.43 6.33 −16.03 5.98 −15.53 1.18 −1.44
    3 6 70 10.60 −20.50 23.87 −27.56 2.72 −8.69 22.03 −26.86
    4 2 55 9.77 −19.80 3.91 −11.84 8.86 −18.95 8.07 −18.14
    5 4 70 2.70 −8.64 17.17 −24.69 8.77 −18.86 20.02 −26.03
    6 6 40 17.41 −24.82 26.02 −28.31 3.72 −11.42 29.95 −29.53
    7 2 70 9.42 −19.48 7.32 −17.29 6.92 −16.81 5.06 −14.09
    8 4 40 7.92 −17.97 14.08 −22.97 3.77 −11.53 5.76 −15.21
    9 6 55 8.76 −18.85 13.64 −22.69 7.01 −16.91 6.66 −16.47
    下载: 导出CSV
  • [1] CRUZ D, SORDI V L, VENTURA C E H. Surface analysis of WC-5%Co cemented tungsten carbide cutting insert after plunge-face grinding [J]. The International Journal of Advanced Manufacturing Technology,2020,108(1/2):1-8. doi: 10.1007/s00170-020-05074-7
    [2] 江湘颜, 何云. 整体硬质合金波刃铣刀磨削加工的工艺研究 [J]. 硬质合金,2009,26(2):102-105.

    JIANG Xiangyan, HE Yun. Research on grinding technology of solid hardmetal milling cutter with waved edges [J]. Cemented Carbide,2009,26(2):102-105.
    [3] BOUZAKIS K D, KLOCKE F, SKORDARIS G, et al. Influence of dry micro-blasting grain quality on wear behaviour of TiAlN coated tools [J]. Wear,2011,271(5/6):783-791. doi: 10.1016/j.wear.2011.03.010
    [4] ZHANG S, ZOU B, LIU Y, et al. Edge passivation and quality of carbide cutting inserts treated by wet micro-abrasive blasting [J]. The International Journal of Advanced Manufacturing Technology,2018,96:2307-2318. doi: 10.1007/s00170-018-1705-7
    [5] WANG W, SAIFULLAH M K, ASSMUTH R, et al. Effect of edge preparation technologies on cutting edge properties and tool performance [J]. International Journal of Advanced Manufacturing Technology,2020,106(5/6):1-16.
    [6] 李荣敏, 赵雪峰, 郑鹏飞, 等. 磁盘间隙对刀具刃口钝化的影响 [J]. 机械设计与制造,2020(1):119-122.

    LI Rongmin, ZHAO Xuefeng, ZHENG Pengfei, et al. Research on the influence of the magnetic disk gap on the tool edge preparation [J]. Machinery Design & Manufacture,2020(1):119-122.
    [7] 曾伟, 牟伟旭, 王培, 等. 柔性纤维式机械抛光柔性纤维磨损及加工效率的研究 [J]. 工具技术,2013,47(7):13-17.

    ZENG Wei, MOU Weixu, WANG Pei, et al. Study on brush wear and polishing efficiency by mechanical polishing with brush [J]. Tool Engineering,2013,47(7):13-17.
    [8] LI M, LYU B H, YUAN J L, et al. Shear-thickening polishing method [J]. International Journal of Machine Tools and Manufacture,2015,94:88-99. doi: 10.1016/j.ijmachtools.2015.04.010
    [9] LI M, LYU B H, YUAN J L, et al. Evolution and equivalent control law of surface roughness in shear-thickening polishing [J]. International Journal of Machine Tools & Manufacture,2016,108:113-126.
    [10] SHAO Q, LYU B H, YUAN J L, et al. Shear thickening polishing of the concave surface of high-temperature nickel-based alloy turbine blade [J]. Journal of Materials Research and Technology,2021,11:72-84. doi: 10.1016/j.jmrt.2020.12.112
    [11] LYU B H, HE Q K, CHEN S, et al. Experimental study on shear thickening polishing of cemented carbide insert with complex shape [J]. The International Journal of Advanced Manufacturing Technology,2019,103:585-595.
    [12] YANG W H, TARNG Y S. Design optimization of cutting parameters for turning operations based on the Taguchi method [J]. Journal of Materials Processing Technology,1998,84(1/2/3):122-129. doi: 10.1016/S0924-0136(98)00079-X
    [13] 刘志飞, 王晓强, 朱其萍, 等. 超声滚挤压轴承套圈的表层性能预测模型建立及工艺参数优化 [J]. 锻压技术,2021,46(3):118-125.

    LIU Zhifei, WANG Xiaoqiang, ZHU Qiping, et al. Establishment on prediction model of surface performance for ultrasonic roll extrusion bearing ring and optimization on process parameters [J]. Forging and Stamping Technology,2021,46(3):118-125.
    [14] 王斌, 邓小川, 史一飞, 等. 田口实验设计法优化碳酸锂反应结晶制备工艺 [J]. 无机盐工业,2021,53(8):60-65.

    WANG Bin, DENG Xiaochuan, SHI Yifei, et al. Optimizing preparation process of lithium carbonate reaction crystallization by Taguchi experimental design method [J]. Inorganic Chemicals Industry,2021,53(8):60-65.
    [15] NGUYEN H P, PHAM V D, NGO N V. Application of TOPSIS to Taguchi method for multi-characteristic optimization of electrical discharge machining with titanium powder mixed into dielectric fluid [J]. The International Journal of Advanced Manufacturing Technology,2018,98:1179-1198. doi: 10.1007/s00170-018-2321-2
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  223
  • HTML全文浏览量:  53
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 录用日期:  2021-12-20
  • 收稿日期:  2021-11-05
  • 修回日期:  2021-12-15

目录

    /

    返回文章
    返回